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1 Introduction

There is growing interest in understanding how forecasters form expectations and
make predictions about macroeconomic variables. The literature on expectation for-
mation primarily focuses on how forecasters predict variables following a single com-
ponent stationary process, with fewer studies investigating how they handle trends
and cycles in their expectation formation process. In this paper, we introduce a simple
framework to characterize how forecasters update their beliefs, form expectations, and
make forecasts when macroeconomic variables contain trend components that cannot
be perfectly distinguished from cyclical components.

Our first contribution in this paper is to provide empirical evidence on how fore-
casting behaviors vary across different forecast horizons—evidence that contradicts
the aforementioned assumptions commonly used in existing models.

Second, we fully characterize a scenario where two persistent components (trends
and cycles) cannot be perfectly disentangled in a dynamic setting. Our framework al-
lows both the trend and cyclical components to be unobservable while also permitting
both components to be persistent. This creates a more realistic and novel trend-cycle
confusion mechanism that can account for the empirical patterns we document.

Third, we demonstrate how this rational confusion mechanism can interact with
behavioral biases to generate new insights addressing empirical puzzles in the expec-
tation formation literature, such as the persistent forecast error puzzle.

We begin our empirical analysis using the Survey of Professional Forecasters (SPF),
which collects individual-level forecasts for macroeconomic variables at both short
and long horizons.1 First, we examine the covariance between changes in long-run
and short-run cyclical forecasts at the forecaster level. We focus on this empirical mo-
ment because it maps directly to theoretical predictions and helps distinguish between
competing models.

Specifically, we consider three-year-ahead forecasts for macroeconomic variables,
such as the real GDP growth rate and the unemployment rate, as long-run forecasts.
The difference between the h-quarters ahead forecast of a relevant macroeconomic
variable and its three-year-ahead forecast is defined as the cyclical forecast, captur-
ing short-run deviations from the long-run forecast. We then construct ’across-period
changes’ in both long-run and cyclical forecasts for each forecaster. Changes in long-
run forecasts are calculated as the difference between their three-year-ahead forecasts
in quarters t and t − 1. Similarly, we calculate changes in cyclical forecasts. By con-
struction, changes in long-run forecasts reflect belief changes in both the trend and
cyclical components, while changes in cyclical forecasts are proportional to belief changes

1The SPF offers key advantages over alternative datasets: Blue Chip forecasts are limited to six quar-
ters ahead without long-run projections, while Consensus Economics only provides long-run forecasts
at the consensus level.
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in the cyclical component.
Models that assume either an observable trend or a transitory cyclical component

predict a non-negative covariance between changes in long-run forecasts and cyclical
forecasts, as the same cyclical component drives both forecasters update their beliefs
regarding the two components independently. Furthermore, these models predict that
this covariance should decrease as h increases, converging to zero when h approaches
three years, since the cyclical component plays a diminishing role over longer hori-
zons.

However, our empirical findings contradict these theoretical predictions. For both
real GDP growth and the unemployment rate, the covariance of interest is negative
and increases as h increases in the SPF data. In other words, not only is the sign of the
covariance opposite to what existing models predict, but its pattern over the forecast
horizon h is also reversed.

Second, we examine how the cross-sectional dispersion of forecasts varies over the
forecast horizon. Models that assume either an observable trend or a transitory cycli-
cal component predict that forecast dispersion among forecasters should monotoni-
cally decrease as the forecast horizon increases. This is because disagreement among
forecasters, caused by heterogeneous information about cyclical components, would
diminish as the forecast horizon extends.2

Using the SPF data, we observe that for most macroeconomic variables (after be-
ing transformed into growth rates), forecast dispersion increases as the forecast hori-
zon extends from zero to four quarters ahead. Additionally, we examine year-level
forecast dispersion for real GDP growth and the unemployment rate over a longer
forecast horizon and show that it increases as the horizon expands from one to three
years. Interestingly, for inflation expectations, one of the most important macroeco-
nomic variables, forecast dispersion decreases over horizons. These findings present a
challenge for existing models and raise the question of how to reconcile both patterns
of increasing and decreasing forecast dispersion across different variables and time
horizons within one coherent framework.

Motivated by these findings, we propose an otherwise standard forecasting model
that explicitly incorporates a non-stationary, unobservable trend component in the
data generation process. Specifically, in this model, the state variable consists of a
non-stationary random walk trend component and a cyclical component that follows
the standard AR(1) process. The goal of forecasters is to minimize the squared error
of their forecasts. The actual value of the state, which is the sum of these two compo-
nents, is publicly announced and observed by forecasters at the end of each period.

2For example, if the forecasted variable is assumed to follow a stationary data generation process
(e.g., an AR(1) process with a constant long-run mean), when the forecast horizon is long enough, all
forecasts should converge to that long-run mean, and the forecast dispersion would approach zero.
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The key assumption is that forecasters cannot directly observe the actual realiza-
tions of the trend and cyclical components. Instead, in each period, they receive two
private noisy signals on the trend and cyclical components, respectively. This means
that they are unable to differentiate the two components perfectly and must make in-
ferences about them based on imperfect information.

In such a setting, forecasters need to update their beliefs about the trend and cycli-
cal components twice in each period. At the beginning of each period, forecasters
receive private signals regarding the trend and cyclical components and then revise
their beliefs on each component. Forecasters use this set of posterior beliefs to make
forecasts that minimize the expected forecasting errors. At the end of each period, the
actual state value is disclosed, which is informative about both the trend and cycli-
cal components. Consequently, forecasters must update their beliefs again, making
revisions to their beliefs about the two components.

In this model, forecasters do not update their beliefs about the trend and cyclical
components independently. In other words, they are rationally confused. Specifically,
in the presence of this confusion mechanism, a strong signal about the cyclical com-
ponent creates a positive surprise, which plays a dual role. First, it provides informa-
tion about the cyclical component; therefore, forecasters revise their posterior beliefs
regarding the cyclical component upwards from the prior beliefs inherited from the
previous period. This is the standard belief updating mechanism. Second, such a pos-
itive surprise about the cyclical component is also useful for updating beliefs about
the trend component. Forecasters rationally interpret the positive surprise as indicat-
ing they likely underestimated the cyclical component previously. Consequently, they
would conclude that they had likely overestimated the trend component and would
revise their current beliefs regarding the trend component downward.

In summary, the confusion between trend and cyclical components leads forecast-
ers to rationally update their beliefs about these components in opposite directions.
This mechanism gives rise to a negative covariance between the two beliefs. In the
data, the constructed covariance between changes in long-term forecasts and changes
in cyclical forecasts is proportional to the sum of the negative covariance of beliefs and
the variance of beliefs about the cyclical component. When the confusion mechanism
dominates, the covariance between changes in long-term and cyclical forecasts can be
negative. Furthermore, as the forecast horizon h used to construct the cyclical forecasts
increases, the constructed change in cyclical forecasts reflects a smaller proportion of
the changes in cyclical components. Therefore, the covariance of changes in forecasts
should also diminish in magnitude as h increases.

This mechanism can also account for the observed increase in forecast dispersion
over horizons. In this model, for any forecast horizon, the dispersion of forecasts
can be broken down into three parts: the dispersion caused by heterogeneous beliefs
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about the cyclical component, the dispersion caused by heterogeneous beliefs about
the trend component, and the covariance between these beliefs. The first part, the
dispersion caused by heterogeneous beliefs about the cyclical component, always de-
creases over the forecast horizon, as the cyclical component becomes less influential
for longer-term forecasts. The second part, the dispersion caused by heterogeneous
beliefs about the trend component, remains constant over the forecast horizon, as the
trend component is equally important for all horizons.

The third part, characterized by the negative covariance of cross-forecaster mean be-
liefs regarding the two components, is a novel aspect of the model. It stems from fore-
casters’ use of signals regarding one component to update their beliefs about the other
component. Furthermore, its importance diminishes over the forecast horizon as the
cyclical component itself becomes less influential in forecasting. Therefore, the over-
all forecast dispersion could either increase or decrease over horizons. We show that
forecast dispersion increases under the condition that the trend is neither too volatile
nor too stable.

A few comments on our model are in order. First, we choose to model this rational
confusion mechanism in a trend-cycle framework because we address specific empir-
ical patterns and use data to validate our model mechanism. In fact, the confusion
mechanism can be generalized to situations where both components are persistent
without requiring a random walk component. Second, in existing models, forecasters
would update their beliefs about the two components independently. This is either
because forecasters could observe and therefore differentiate trends and cycles per-
fectly, or because of the cyclical component’s lack of persistence. Finally, the key to our
model is that forecasters must update their beliefs about the two components jointly
even though they know these are two independent processes. This leads to the neg-
ative covariance between the two beliefs, which creates qualitative differences from
existing models.
Model Validation: Explicit Inflation Targeting. Our model generates distinct fore-
casting patterns that vary with the underlying parameter space. Specifically, depend-
ing on the data-generating process, our model predicts that the covariance between
changes in long-run and cyclical forecasts can be either positive or negative, while
forecast dispersion may either increase or decrease across horizons. To validate these
theoretical predictions, we exploit a policy shock that altered the data-generation pro-
cess. By analyzing whether the subsequent changes in forecasting behavior align
with our model’s predictions, we can assess the validity of our proposed mechanism.
Specifically, we examine the impact of implementing an inflation targeting policy in
2012 on forecasting behaviors. We demonstrate that the observed changes in fore-
casting behaviors following this policy shift are consistent with the predictions of our
model, lending support to our proposed mechanism.
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Rational Confusion and Behavioral Bias: Persistent Forecast Errors. We also extend
our model to incorporate behavioral biases, which have been shown to be prevalent
in the expectation formation process. The interaction between these biases and the
rational confusion mechanism leads to qualitatively different model predictions com-
pared to models lacking either feature, yet these predictions remain empirically rele-
vant. Specifically, by introducing forecaster overconfidence in new information, our
enhanced model addresses an important empirical puzzle: the positive correlation be-
tween consecutive forecast errors in SPF data, indicating that errors persist across pe-
riods rather than being serially independent (Ma et al. 2020).3 This persistent pattern
cannot be rationalized by standard noisy information models with overconfidence,
nor by our rational confusion mechanism alone. Rather, it emerges specifically from
the interaction between these two mechanisms.
Discussion. In our benchmark model, we deliberately maintain a simple information
structure to emphasize our novel core mechanism. We then extend our analysis to
explore two alternative settings. First, we expand the model to allow forecasters ac-
cess to a full range of multi-horizon forecasts from other forecasters at each period’s
end. These forecasts provide information about aggregate beliefs on trend and cyclical
components, enriching the forecasters’ information set. Despite this additional infor-
mation, we show that forecasters still cannot perfectly differentiate between trend and
cyclical components. While they can derive consensus forecasts for both components,
these consensus forecasts retain time-varying errors. Importantly, our key qualitative
results remain robust in this extended scenario.

We also examine an alternative scenario where confusion arises from forecasters
misinterpreting signals. In such a model, forecasters observe trend and cyclical com-
ponents at period-end but infer these components for the next period based on signals.
Some forecasters may mistake trend signals for cyclical ones, and vice versa. This
model can predict increasing forecast dispersion over horizons when the fraction of
misinterpreting forecasters is moderate. However, it always predicts a non-negative
covariance between changes in trend and cyclical forecasts, contradicting our findings.
Literature Review. This paper contributes to the literature on expectation formation in
particular and information friction in general. First, it complements recent studies that
use survey data to investigate expectation formation. Studies within the noisy infor-
mation paradigm have found that forecasters tend to under-react to new information
at the aggregate level (Coibion and Gorodnichenko 2015), but exhibit overreactions at
the individual level (Bordalo et al. 2020; Angeletos and Huo (2021); Broer and Kohlhas
2024; Huo et al. 2024).4

3Ma et al. (2020) document that managerial forecast errors are positively and significantly autocorre-
lated, using the managerial survey from the Bank of Italy. We show that this puzzling fact also manifests
in SPF data.

4New contributions to this literature further expand its scope. For instance, Kohlhas and Walther
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A distinguishing feature of our work is that, unlike these studies which typically
assume a stationary data-generating process for the state (often an AR(1) process), we
examine scenarios incorporating a non-stationary trend component. This exploration
is not only realistic but also empirically relevant, as prior research has established the
presence of non-stationary trends in various macroeconomic variables, such as GDP
growth rate (Stock and Watson 1998) and the unemployment rate (Blanchard and Sum-
mers 1986).5 Our work emphasizes that the unobservability of trends to forecasters is
crucial for understanding the patterns of forecasting behaviors. This framework, even
in its simplest form, yields several predictions that align with a set of empirical facts
concerning how forecast behaviors vary over the forecast horizon.

Second, our model contributes to the existing literature on signal extraction prob-
lems in macroeconomics. Existing works focus on cases where forecasters cannot
distinguish between persistent and transitory components (Muth 1960; Lucas and
Prescott 1978; Collard et al. 2009; Lorenzoni 2009; Bostanci and Ordoñez 2024). Xie
(2023) develops a Bayesian learning model of inflation expectations with time-varying
parameters and noisy signals, highlighting the difficulty individuals face in separat-
ing structural shifts from noise. While her focus is on household expectations, the
core idea, imperfect inference under persistent uncertainty, relates to our trend-cycle
confusion mechanism. Our model differs in that, in a noisy information framework,
forecasters need to separate two persistent components in a dynamic setting, which
generates negatively correlated belief updates between the components. This is the
key to accounting for forecasting patterns across forecasting horizons in our model.6

Third, our paper presents an evidence-motivated theoretical model, which is re-
lated to but distinct from previous quantitative works that utilize the trend-cycle frame-
work. Farmer et al. (2024) presents a Bayesian learning model within a trend-cycle
framework, focusing on model uncertainty about the data-generation process as a key
friction rather than noisy information. Their model focuses on a representative fore-
caster and addresses several anomalies in consensus forecasts. In contrast, our work is
grounded in the paradigm of noisy information and examines heterogeneity in indi-
vidual forecasting behaviors, using variations in forecasting patterns across different
horizons to inform the process of expectation formation. For example, our model can
predict various patterns of cross-forecaster dispersion over different horizons.

(2021) explore why individual forecast errors are negatively correlated with current realizations, while
Rozsypal and Schlafmann (2023) examine how forecaster characteristics influence individual forecast
errors. Chen et al. (2024) study individuals’ heterogeneous overreaction to shocks of various properties.

5Early studies such as Nelson and Plosser (1982) and Harvey (1985) have demonstrated the presence
of a non-stationary trend component in GDP growth. Similar findings have also been observed in
studies analyzing inflation data, such as Cogley and Sargent (2005) and Cogley and Sbordone (2008).

6In this paper, we model a scenario where forecasters update their predictions for each macroeco-
nomic variable individually. Wang and Hou (2024) presents empirical evidence supporting the realism
of this forecasting behavior.
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Fisher et al. (2025) study a behavioral model within a trend-cycle framework to
address two important anomalies in long-run inflation expectation data: the persistent
deviations of average expectations from actual trend inflation, and large and persistent
disagreement regarding long-run inflation. In contrast, our key confusion mechanism
is fully rational, and our work addresses a different set of empirical facts that apply to
macroeconomic variables in general.

Finally, our work addresses the documented phenomenon that forecast dispersion
tends to be larger in the long run. In the previous literature, studies have explained this
pattern through either behavioral biases (Lahiri and Sheng 2008 and Patton and Tim-
mermann 2010) or sticky information frameworks (Andrade et al. 2016). Our model
offers a novel alternative, as the confusion mechanism we propose is fully rational
rather than behavioral. Furthermore, a key distinctive prediction of our framework
is that changes in trend forecasts and changes in cyclical forecasts can be negatively
correlated – a feature that provides a clear empirical test to differentiate our approach
from existing explanations.

2 Evidence

This section presents two key empirical findings from the U.S. Survey of Professional
Forecasters (SPF). First, we document a negative covariance between changes in fore-
casters’ long-term and cyclical forecasts. Second, we show that forecast dispersion
among forecasters tends to increase with the forecast horizon for most macroeconomic
variables.

2.1 Survey of Professional Forecasters Data

The Survey of Professional Forecasters (SPF) of the U.S. is a source of predictions made
by professional forecasters regarding a broad range of macroeconomic variables. The
data is collected quarterly and goes back to 1968Q4. The Fed of Philadelphia surveys
approximately 35 professional forecasters each quarter, assigning a unique ID number
to each forecaster to track their forecast history.

For each variable, a forecaster provides six predictions, including one back-cast to-
ward the previous period, a now-cast (forecast for the current quarter), and forecasts
for the subsequent four quarters. In addition, they are asked to provide The annual
projection of this variable for the current year, and the next year. Since 1991Q4, the
survey has included an extra question regarding the Consumer Price Index (CPI) for
a ten-year forecast. Since 1992Q1, the first quarter survey has included an additional
question about the GDP for a ten-year forecast, while since 1996Q3, the third quarter
survey has incorporated an additional question regarding the natural unemployment
rate. Starting from 2009, SPF has expanded to encompass year-level forecasts of the
unemployment rate and real GDP for two- and three-year periods. Table A.1 in Ap-
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pendix provides a summary of the starting dates and frequency for each data series.
The survey is conducted before the end of each quarter, following the Bureau of

Economic Analysis’ (BEA) advance report of the national income and product ac-
counts (NIPA) release. The BEA reports macroeconomic variables (e.g., GDP esti-
mates) for the preceding quarter. At the beginning of the questionnaire, forecasters
will be provided with the BEA reported value of the macro variable for the previous
quarter. Therefore, when giving their predictions for current and future quarters, fore-
casters have access to information about the values of forecasted variables up to the
last quarter.

In Appendix A.4, we use the European Central Bank’s Survey of Professional Fore-
casts (ECB-SPF) as a robustness check. The ECB-SPF provides individual forecasts for
unemployment, real GDP growth, and inflation at multiple horizons: current year,
next year, two years ahead, and long-run. This comprehensive horizon coverage en-
ables us to proxy individual cyclical beliefs quarterly. Both the US-SPF and ECB-SPF
have advantages over alternative datasets: Blue Chip forecasts are limited to six quar-
ters ahead and lack long-run projections (except for inflation)7, and Consensus Eco-
nomics only reports long-run forecasts at the aggregate level.

2.2 Covariance: Changes in Long Term Forecasts and Cyclical Forecasts

Building on this dataset, the following section presents a novel empirical test that ex-
amines the covariance between changes in forecasters’ long-term and cyclical forecasts
across time. We will show that the covariance of these changes is informative about
the process of expectation formation.

We start our investigation by constructing forecasters’ long-run forecasts and cycli-
cal forecasts. As discussed earlier, since 2009, the Survey of Professional Forecasters
(SPF) has asked forecasters each quarter to report their long term forecasts for the un-
employment rate and real GDP, precisely three years ahead. We employ forecaster
i’s three-year ahead forecast at quarter t, denoted as Fi,tyt+3Y, to represent her long-
run forecasts.8 Furthermore, we utilize the deviation of forecaster i’s forecast h period
ahead at quarter t, denoted as Fi,tyt+h, from the three-year ahead forecast as her cycli-

7While Blue Chip derives inflation expectations from various indicators ranging from 3-month T-
bills to 30-year T-bonds, the spread between these rates cannot be interpreted as cyclical beliefs.

8A possible concern is that three-year-ahead forecasts may not adequately represent long-run fore-
casts. To address this, we utilize two forecast series with longer horizons: ten-year forecasts for real
GDP (available every first quarter since 1992Q1) and forecasts of the natural unemployment rate (avail-
able every third quarter since 1996Q3). In Appendix A.2, we demonstrate that three-year-ahead fore-
casts are highly correlated with those for longer horizons, making them reasonable representations of
long-run forecasts. We do not use the ten-year forecasts for GDP and the natural unemployment rate
in our analysis due to the coarse frequency of observations at the yearly level. Instead, we focus on
three-year-ahead forecasts, which are available at the quarterly level.
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cal forecasts. Specifically, forecaster i’s cyclical forecasts is constructed as follows:

Cych
i,t = Fi,tyt+h − Fi,tyt+3Y.

Then, we examine the covariance between the changes in the long-run forecasts
and the cyclical forecasts:

COVh
F = cov(Fi,tyt+3Y − Fi,t−1yt−1+3Y, Cych

i,t − Cych
i,t−1). (1)

The first term on the right-hand side of Equation (1) represents the difference between
three-year ahead forecasts for periods t and t − 1. The second term corresponds to the
change in cyclical forecasts between these two periods. The horizon h = 0, 1, 2, 3, 4 rep-
resents the forecast horizon for the short-term forecast, which is utilized to construct
the forecasts on cyclical components.

If the trend is perfectly observable to forecasters, this covariance shall be positive.
This is because changes in cyclical forecasts reflect changes in the cyclical components
from quarter t to quarter t − 1. Similarly, changes in long-term forecasts represent
shifts in both the trend and cyclical components between these quarters. The covari-
ance must be positive, provided that the innovations in trend and cyclical components
are uncorrelated. Furthermore, the covariance should decrease as h (i.e., the forecast
horizon for the short-term forecast used to construct cyclical forecast) increases, since
the changes in cyclical forecasts would be less proportional to changes in cyclical in-
novations when h is longer.

If the cyclical component is not persistent (i.e., ρ = 0), this covariance should be
zero. This is because changes in long-term forecasts would only represent shifts in the
trend between these quarters. This set of predictions is characterized in Section 4.1.

Figure 2.1 illustrates the covariance between changes in long-run forecasts and
cyclical forecasts for both the unemployment rate and real GDP growth. The x-axis
represents the forecast horizons set at h = 0, 1, 2, 3, 4. Figure 1(a) shows the COVh

F

for the unemployment rate, while Figure 1(b) depicts the COVh
F for real GDP growth.

We observe a negative and significant COVh
F for both variables, with the covariance

increasing as the horizon h expands. Details of this estimation are shown in Table A.2.
These findings suggest that when a forecaster updates her long-run forecast up-

ward, she tends to simultaneously revise her cyclical forecast downward. The empir-
ical results reveal a pattern contrary to the predictions of the observable-trend model:
not only is the covariance negative instead of positive, but it also increases over the
horizon h rather than decreases.

In Appendix A.4, we present estimation results using ECB-SPF data for the un-
employment rate, real GDP growth, and inflation. These results are consistent with
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Figure 2.1. Covariance between the changes in long-run forecasts and cyclical forecasts across forecast
horizon h. Note: This figure illustrates the covariance COVh

F for the unemployment rate and real GDP
growth across various forecast horizons h. The left panel shows the COVh

F for the unemployment rate,
while the right panel depicts the COVh

F for real GDP growth. In both cases, the covariance is negative
and statistically significant, increasing as the forecast horizon extends. The black dots represent the
estimates, and the gray solid lines denote the 95% confidence intervals.

the pattern in Figure 2.1, where all three variables exhibit negative covariance that
increases with the forecast horizon h.

2.3 Forecast Dispersion over Forecast Horizon

In this section, we explore whether the dispersion in forecasts among forecasters varies
as the forecast horizon extends. This analysis provides insights into the role of beliefs
concerning trends and cycles. If the trend is observable or the cyclical component lacks
persistence, forecast dispersion should decrease monotonically as the forecast horizon
increases, regardless of whether we examine short-term forecasts (within a year) or
longer-term forecasts. This set of predictions will be characterized in Section 4.1.

First, we investigate the short-term forecasts, for which we have forecast data for
most macroeconomic variables. Using SPF data, we estimate the following equation:

Forecast dispersionth = α + β1h + ϵth, (2)

where Forecast dispersionth represents the cross-forecaster dispersion in forecasts Fi,tyt+h

provided by forecaster i at period t for h quarters ahead and the forecast horizon is de-
fined as h = 0, 1, 2, 3, 4. The standard error is clustered at the year-quarter level.

We consider two measures of forecast dispersion: the variance of forecasts across
forecasters and the difference between the 75th percentile and the 25th percentile. We
estimate Equation (2) using all available macroeconomic variables. The estimated co-
efficient β1 is of particular interest and is presented in Table 2.1.
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Table 2.1. Forecast dispersion over forecast horizon

Dependent Variable: Forecast Dispersion

Variance of forecasts 50 percentile difference

Obsβ1 SE β1 SE

Forecast Variable (1) (2) (3) (4)

Nominal GDP 0.337*** 0.026 0.204*** 0.008 1,025
Real GDP 0.242*** 0.022 0.162*** 0.007 1,025
GDP price index inflation 0.118*** 0.008 0.119*** 0.004 1,025
Real consumption 0.125*** 0.013 0.127*** 0.006 770
Industrial production 0.860*** 0.062 0.320*** 0.014 1,025
Real nonresidential investment 1.647*** 0.127 0.497*** 0.018 770
Real residential investment 6.021*** 0.547 0.932*** 0.039 770
Real federal government consumption 1.284*** 0.102 0.393*** 0.019 770
Real state and local government consumption 0.317*** 0.028 0.210*** 0.009 770
Housing start 0.004*** 0.000 0.020*** 0.001 1,024
Unemployment 0.034*** 0.002 0.081*** 0.003 1,014
Inflation (CPI) -0.066*** 0.021 -0.073*** 0.012 770
Three-month Treasury rate 0.091*** 0.010 0.132*** 0.007 770
Ten-year Treasury rate 0.045*** 0.001 0.094*** 0.003 560
Note: This table shows results from estimating Equation (2). The sample period is from 1968Q4 to 2019Q4. In column
(1), the dependent variable is the variance of forecasts across forecasters. In column (3), we use the difference between
the 25% percentile and 50% percentile. Standard errors are clustered at the year-quarter level.

Column (1) of Table 2.1 presents the results using forecast variance as the measure
of forecast dispersion. The coefficient for the forecast horizon h is positive (β1 > 0) and
statistically significant for most variables, indicating that forecasts among forecasters
become more dispersed as the forecast horizon increases. The only exception is infla-
tion. We will revisit the analysis of inflation expectations in section 5. In column (3),
we repeat our estimations using the difference between the 75th and 25th percentiles
as the measure of forecast dispersion. The results are rather similar. To confirm that
the pattern is robust to the inclusion of time fixed effect, we report the estimation re-
sults with year-quarter fixed effect in Table A.4. In addition, using the coefficient of
variation as the measure of forecast dispersion, the results would be very similar.

Second, we investigate the longer-term forecasts, for which we have forecast data
for fewer variables. Specifically, we focus on a subset of variables with annual forecast
data that spans an extended horizon. Starting from 2009Q1, the U.S. Survey of Profes-
sional Forecasters (SPF) includes forecasts for real GDP and the unemployment rate
one year, two years, and three years into the future. We utilize this dataset to estimate
the following specification:

Forecast dispersiontH = α2 +
3

∑
H=1

βH horizonH + ϵt, (3)

where Forecast dispersiontH is the dispersion of forecasts of horizon H across all fore-
casters and horizonH is a dummy variable for horizon H, taking the value 1 if the
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(a) Unemployment rate (b) Real GDP growth

Figure 2.2. Dispersion of the year-level forecasts. Note: The figure presents the estimation results
from Equation (3). The panel on the left displays the estimated coefficients for the unemployment rate,
while the panel on the right shows those for real GDP growth. The sample period spans from 2009Q1 to
2019Q4. In both cases, βH is greater than zero and increases as H increases, indicating larger dispersion
as the forecast horizon expands.

forecast horizon is H = 1 year, 2 years, or 3 years ahead; and 0 otherwise. The co-
efficient βH captures the difference in forecast dispersion between forecasts H years
ahead and current year predictions (H = 0).

Figure 2.2 presents the estimation results. Figure 2(b) shows results for real GDP,
while Figure 2(a) displays results for the unemployment rate. In both cases, the co-
efficients βH are positive and increase with the forecast horizon. These findings also
contradict the predictions of the observable-trend model, which states that dispersion
should decrease monotonically.

In the literature, several studies have investigated this particular pattern, which
offer similar findings that are inconsistent with the observable-trend model. Lahiri
and Sheng (2008) use the Consensus Forecasts data and show that the forecast disper-
sion of real GDP growth is larger in a longer forecast horizon for all the G7 countries.
Patton and Timmermann (2010) utilize the same data and find that both the forecast
dispersion regarding the U.S. GDP growth and inflation is higher at longer horizons.
Andrade et al. (2016) study the data from Blue Chip Survey and find a steady increase
in the dispersion of Federal Fund rate forecasts as the forecast horizon extends.

3 Forecasting Model with Trend-cycle Confusion

3.1 Setup

Utility function. In this model, there exists a continuum of forecasters, indexed by
i ∈ [0, 1], who make forecasts about a stochastic state variable yt. The objective of the
forecasters is to minimize forecasting errors. We consider a standard quadratic utility
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function, which is given by:

U(Fi,tyt+h) = −(Fi,tyt+h − yt+h)
2, (4)

where yt+h is the actual value of the state in period t + h and Fi,tyt+h denotes the
forecast made by forecaster i at period t for the state h periods in the future.
Data generation process. We assume that the state variable yt is composed of two com-
ponents: a trend component, µt, representing long-term trend, and a cyclical compo-
nent, xt, capturing short-term fluctuations. In particular, the trend follows a random
walk process, while the cycle is modeled as an AR(1) process. Specifically, the data
generation process for the state can be described as follows:

yt = µt + xt, (5)

µt = µt−1 + γ
µ
t ,

xt = ρxt−1 + γx
t ,

where ρ is the persistence for the AR(1) process and γ
µ
t and γx

t are the innovations of
the trend and cyclical components, both of which are normally distributed with zero
mean and variances of σ2

µ and σ2
x , respectively, i.e.,γµ

t ∼ N(0, σ2
µ) and γx

t ∼ N(0, σ2
x).

We use θt = (µt, xt)′ to denote the state components in period t. Consistent with
the previous literature, we assume that the data generating process (DGP) is common
knowledge for all forecasters.9

In each period, forecasters receive private noisy signals for each component, that
is, si,t = (sµ

i,t, sx
i,t)

′, where10

sµ
i,t = µt + ϵi,t; and sx

i,t = xt + ei,t. (6)

We assume that the error terms of the signals are independent and normally dis-
tributed. The variance-covariance matrix of i’s private signals is given by:

Σs =

(
σ2

ϵ 0
0 σ2

e

)
.

9In Appendix C.1, we discuss the scenario in which a common shock affects both the trend and
cyclical components. This specification resembles that in Delle Monache et al. (2024). We demonstrate
that this setting cannot produce the observed empirical patterns if the trend component is observable.

10Trend signals, reflecting long-run economic shifts, include announcements of structural reforms
(e.g., deregulation), demographic projections, technological breakthroughs (e.g., AI advancements),
changes to central bank inflation targets, and long-term policy framework adjustments. Conversely,
cycle signals, indicating short-term fluctuations, include temporary supply chain disruptions, extreme
weather events, fiscal stimulus measures (e.g., tax rebates), and inventory cycle updates. Forecasters
also leverage proprietary research, such as business surveys and alternative data analysis, to be in-
formed about both trend and cycle components.
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Forecasts Fi,t−1yt−1+h θi2,t−1 θi1,t Forecasts Fi,tyt+h θi2,t

yt−1 si,t yt

Figure 3.1. Timeline. In each period t, forecaster i will update her beliefs twice. First, based on the
observed private signals, forecaster i adjusts her beliefs and provides forecasts for the current and future
periods, i.e., Fi,tyt+h. Second, forecaster i revises her beliefs regarding the trend and cycle upon observing
the actual realization of the state variable. The diamond boxes represent exogenous information flow.
The squared boxes stands for the forecaster i’s beliefs.

At the end of each period t, we allow forecasters to observe the actual state variable
yt but not the trend and cyclical components. Therefore, upon the announcement of
the actual state value, forecasters revise their beliefs regarding the trend and cyclical
components. The updated beliefs about the two components become the prior beliefs
for the next period.

Throughout the paper, we use θi
1,t to represent forecaster i’s posterior belief after

forecaster i receive signals about the trend and cyclical components in period t (i.e., the
first update). We use θi

2,t to represent forecaster i’s posterior belief after they observe
the actual realization of the state in period t (i.e., the second update). The subscript 1
and 2 stand for the first and second updating in period t, respectively. We summarize
the timeline of our setting in Figure 3.1:

• At the beginning of period t, forecaster i is endowed with the prior belief θi
2,t−1,

which is the posterior of the second updating from the period t − 1.

• Forecaster i observes the private signal si,t and then update her belief accord-
ingly (the first updating).

• Given the updated beliefs θi
1,t, forecasters choose their optimal forecasts of the

current and future period Fi,tyt+h.

• At the end of period t, yt is revealed.

• Forecasters revise their beliefs again, forming beliefs θi
2,t (the second updating).

3.2 Equilibrium Characterization

In this section, we turn to the characterization of forecasters’ optimal forecasts. We
start our analysis by considering the posterior belief obtained from the second update
in period t − 1, which is the prior belief of forecaster i at the beginning of period t:

θi2,t−1 = (µi
2,t−1, ρxi

2,t−1)
′,
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where µi
2,t−1 and xi

2,t−1 are forecaster i’s beliefs about trend and cyclical components
at the end of period t − 1, respectively. Let zi,t−1 be forecaster i’s error in her belief
regarding the trend in period t − 1.

Lemma 1. Suppose the error term zi,t−1 in period t − 1 is normally distributed, then
zi,t must also be normally distributed. The set of beliefs µi

2,t−1 and xi
2,t−1 can always

be written in the form:

µi
2,t−1 ≡ µt−1 + zi,t−1 and xi

2,t−1 ≡ xt−1 − zi,t−1, (7)

which implies:
µi

2,t−1 + xi
2,t−1 = yt−1.

The proof and subsequent proofs are collected in Appendix B. In the following,
we call zi,t−1 the separation error. First, if the separation error follows a normal dis-
tribution in one particular period, it will continue to be normally distributed indefi-
nitely, given that both the state innovations and signals are also normally distributed.
Second, given the actual yt−1 is observed at the end of t − 1, the normality assump-
tion and the Bayes’ rule requires that beliefs regarding the two components µi

2,t−1 and
xi

2,t−1 must sum up to yt−1. That is, the error terms in the two beliefs are of the same
magnitude but opposite in sign.

Denote the variance of zi,t−1 as σ2
z,t−1, then the variance-covariance matrix of θi2,t−1

follows:

Σθi
2,t−1

=

(
σ2

z,t−1 + σ2
µ −ρσ2

z,t−1

−ρσ2
z,t−1 ρ2σ2

z,t−1 + σ2
x

)
.

The sub-diagonal term −ρσ2
z,t−1 in the covariance matrix is negative. Intuitively, if a

forecaster believes that the trend is stronger than it actually is (i.e., forecasting error on
the trend component is positive), she will tend to believe that the cyclical component is
weaker than it actually is, and vice versa. Note that when forecasters can perfectly dis-
tinguish between the trend and cyclical components, the corresponding sub-diagonal
term will be zero. We will refer to σ2

z,t as the extent of confusion in distinguishing
between the trend and cyclical components.

Lemma 2. There exists a unique steady state σ2
z for the variance σ2

z,t.

The variance σ2
z,t always converges to a steady-state value, σ2

z . To understand why
the variance of the error term, or the extent of confusion, converges, we observe two
opposing forces resulting from the observation of actual data yt. On the one hand, the
change in state provides information about the cyclical component in the last period,
given by yt − yt−1 = −(1 − ρ)xt−1 + γx

t + γ
µ
t . This assists forecasters in separating

the cyclical component from the trend, reducing their confusion. On the other hand,
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because yt comprises both components, forecasters use the observation of the state
and their beliefs about trends (i.e., yt − µi

1,t) to revise their beliefs regarding the cyclical
component xt, thereby increasing their confusion.

When σ2
z,t−1 is large, it implies lower-quality prior beliefs and therefore a lower

quality of µi
1,t. Consequently, the second force becomes less important, and the first

force dominates, leading to a smaller σ2
z,t. Conversely, when σ2

z,t−1 is small, the second
force dominates, resulting in an increase in the extent of confusion. Therefore, the
steady-state value of σ2

z always exists. Throughout the paper, we assume that the
separation error zi has converged to the steady state, given the results are qualitatively
similar when the error term has not converged.

In the following, we present how forecasters update their beliefs and make fore-
casts by following the timeline of events. The first step involves characterizing the pro-
cess of belief updating after forecasters receive their private signals regarding trends
and cycles. In period t, after acquiring the private signals si,t, forecaster i updates
her beliefs on the trend and cyclical components and form her beliefs θi

1,t, which is
joint-normally distributed. The expectations of these beliefs are given by:

θi
1,t = θi

2,t−1 + κ× (si,t − θi
2,t−1), (8)

where κ is the Kalman gain and (si,t − θi
2,t−1) is the surprise from signals:

κ =




V+σ2
e (σ

2
z +σ2

µ)

Ω − ρσ2
ϵ σ2

z
Ω

− ρσ2
e σ2

z
Ω

V+σ2
ϵ (σ

2
x+ρ2σ2

z )
Ω


 and si,t − θi

2,t−1 =

(
sµ

i,t − µi
2,t−1

sx
i,t − ρxi

2,t−1

)
.

The variance-covariance matrix of θi
1,t is given by:

(Σ−1
s + Σ−1

θi
2,t−1

)−1 =

(
VarT C̃OV
C̃OV VarC

)
=




σ2
ϵ [Ω−σ2

ϵ (σ
2
x+σ2

e +ρ2σ2
z )]

Ω − ρσ2
e σ2

ϵ σ2
z

Ω

− ρσ2
e σ2

ϵ σ2
z

Ω
σ2

e [Ω−σ2
e (σ

2
ϵ+σ2

µ+σ2
z )]

Ω


 ,

(9)

where Ω and V are positive constants:

Ω = (σ2
z + σ2

µ + σ2
ϵ )(σ

2
x + σ2

e + ρ2σ2
z )− ρ2σ4

z and V = (σ2
z + σ2

µ)(σ
2
x + ρ2σ2

z )− ρ2σ4
z .

The Kalman gain matrix κ has two parts. The elements on the main diagonal resemble
those in the standard belief updating. That is, forecasters use signals about the trend
(cycle) to update their beliefs on the trend (cycle).

When there is no confusion (i.e., σ2
z goes to zero), the model reduces to the standard

Bayesian case. In this scenario, the Kalman gain for the trend component reduces
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to σ2
µ/(σ2

µ + σ2
ϵ ), and for the cyclical component, it reduces to σ2

x /(σ2
x + σ2

e ). When
there is confusion (i.e., σ2

z > 0), the Kalman gain becomes larger than the Bayesian
case without confusion. In other words, the confusion mechanism leads to less precise
prior beliefs, and forecasters rely more on the signals, which provide new information.
A similar argument holds true for the Kalman gain for the cyclical component.

Crucially, the non-zero elements on the sub-diagonal of the Kalman gain matrix,
distinguish our model from the observable-trends model, where the counterpart terms
are zero. This indicates that in our framework, forecasters incorporate information
about the trend (cycle) component when updating their beliefs about the cyclical (trend)
component. Consider a scenario where the private signal indicates that the cyclical
component is stronger than the forecaster’s prior belief. This situation could arise
from three possibilities: Firstly, it might reflect a substantial positive innovation in the
cyclical component itself. Secondly, it could be due to positive noise in the signal.
Thirdly, it might suggest that the actual value of the cyclical component in the previ-
ous period was larger than what the forecaster believed. As forecasters cannot know
the true value of each component with certainty, they will adjust their prior beliefs
by increasing their estimate of the cyclical component from the last period and cor-
respondingly decreasing their estimates of the trend component for both the last and
current periods.

The variance-covariance matrix in Equation (9) warrants further discussion. Firstly,
the elements on the main diagonal correspond to the perceived variance of the trend
and cyclical components, which are influenced by the confusion mechanism. These
variances are larger compared to the case where there is no confusion (i.e., the compo-
nents can be perfectly observed). We denote them as VarT and VarC, respectively.

Secondly, the elements on the sub-diagonal components are non-zero and negative.
That is, forecasters cannot perfectly distinguish between the trend and cycle, which
gives rise to a negative covariance between the beliefs of these two components. Intu-
itively, when there are strong positive signals about the cyclical component, forecasters
will simultaneously revise the cyclical component upward and the trend component
downward. We denote this covariance of beliefs as C̃OV.

The second step is the stage of making forecasts. Forecaster i makes a series of
forecasts about the state in h periods ahead. Under a quadratic utility function, her
optimal prediction is the expected value of the state variable.

Lemma 3. The optimal forecast of forecaster i over horizon h is determined by their
beliefs of trend and cyclical components, i.e.,

Fi,tyt+h = Ei,t[µt + ρhxt] = µi
1,t + ρhxi

1,t.

This lemma says that the trend and cyclical beliefs play different roles over forecast
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horizons: the trend belief consistently influences predictions across all horizons, while
the influence of the cyclical belief diminishes as the forecast horizon extends.

The final step involves forecasters revising their beliefs again upon observing the
actual value of the current state (yt). This set of posterior beliefs becomes the prior
beliefs for the next period. The forecasting error present in this set of posterior beliefs
is the separation error (zi,t). Lemma 4 characterizes its construction.

Lemma 4. Upon observing the actual state value yt, the separation error zi,t present
in the posterior beliefs is given by:

zi,t =
(VarT + C̃OV)(xt − xi

1,t)− (VarC + C̃OV)(µt − µi
1,t)

(VarT + C̃OV) + (VarC + C̃OV)
. (10)

The extent of confusion σ2
z increases as σ2

µ, σ2
x , σ2

e , and σ2
ϵ increase, converges to zero if

any of these parameters goes to zero and is also bounded:

0 ≤ σ2
z ≤ min{VarC, VarT}. (11)

Recall that VarT and VarC represent the variances of forecasters’ posterior beliefs re-

garding the trend and cyclical components, respectively, while C̃OV denotes the cor-
responding covariance between the two components, as shown in Equation (9).

Lemma 4 states that the separation error after forecasters observe the actual state,
is a weighted combination of the error terms in forecasters’ beliefs regarding the trend
and cyclical components before they observe the actual state. If they over-predict the
trend component (i.e., µt − µi

1,t < 0), then zi,t tends to be positive. Conversely, if they
over-predict the cyclical component (i.e., xt − xi

1,t < 0), then zi,t tends to be negative.11

Note that after observing the actual state value, the covariance between beliefs
regarding the trend and cyclical components is represented as −σ2

z . The extent of con-
fusion, denoted by σ2

z , is influenced by two primary factors: the quality of signals (i.e.,
σ2

e and σ2
ϵ ) and the volatility of the state variables (i.e., σ2

µ and σ2
x). First, forecasters

receive private signals about each component in every period, which help them dif-
ferentiate between the two. Consequently, more accurate signals decrease the level
of confusion. Second, when the state innovations in the trend or cyclical component
are more volatile, it becomes more difficult to identify each component, resulting in a
higher level of confusion. Intuitively, the confusion is upper bounded by the uncer-
tainty in either the trend or cyclical beliefs.

11Consider a special case nested in Equation (10). When the trend is stable (i.e., σ2
µ = 0), forecasters

can predict the trend component perfectly. Therefore, the error term in their beliefs regarding the trend
component is zero. In this scenario, both the variance of the belief regarding the trend component (VarT)
and the covariance (C̃OV) would also be zero. As a result, the separation error in this case would be
zero.
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4 Forecasts over Horizon: Main Results

4.1 Special Case: Independent Updating

Before presenting our model predictions regarding forecasting behaviors over the fore-
cast horizon, we examine a special case where trends are stochastic, but forecasters can
observe the actual trend component at the end of each period. This allows forecasters
to perfectly distinguish between the trend and cyclical components. In this scenario,
the key information friction in our model is absent (i.e., C̃OV = 0), while all other
assumptions remain unchanged. The case where the cyclical component is transitory
is analogous. Contrasting this special case and our benchmark model helps illustrate
the importance of the information friction arising from trends and cycles not being
separable.

In this case, forecasters can perfectly separate the two components, which implies
that the separation error becomes zero (i.e., zi,t = 0) and the variance of the separation
error also reduces to zero (i.e., σ2

z = 0). Consequently, both the Kalman gain matrix in
Equation (8) and the variance-covariance matrix in Equation (9) become standard:

κ =




σ2
µ

σ2
µ+σ2

ϵ
0

0 σ2
x

σ2
x+σ2

e


 and

(
VarT

s C̃OVs

C̃OVs VarC
s

)
=




σ2
ϵ σ2

µ

σ2
ϵ+σ2

µ
0

0 σ2
e σ2

x
σ2

x+σ2
e


 .

In this scenario, the sub-diagonal elements of the Kalman gain matrix are zero, indi-
cating that forecasters do not use information from the trend or cyclical component to
update their beliefs about the other. That is, they treat these components as indepen-
dent, resulting in zero covariance (i.e., C̃OVs = 0).

In the following, we investigate whether this model could help address the two
empirical patterns documented in section 2. We first examine the covariance between
changes in long-run forecasts and cyclical forecasts. Keep in mind that in the empiri-
cal analysis, we take three-year-ahead forecasts (i.e., h = 3Y) as forecasters’ long-run
forecasts. We calculate the difference between h-quarter-ahead forecasts and three-
year-ahead forecasts to obtain the cyclical forecasts. We construct the exact model
counterparts as follows:

Fi,tyt+3Y − Fi,t−1yt−1+3Y = (Ei,t[µt]− Ei,t−1[µt−1]) + ρ3Y(Ei,t[xt]− Ei,t−1[xt−1]),

and
Cych

i,t − Cych
i,t−1 = (ρh − ρ3Y)(Ei,t[xt]− Ei,t−1[xt−1]).

Therefore, the model predicts a positive covariance between changes in the long-run
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forecasts and cyclical forecasts:

COVh
F = ρ3Y(ρh − ρ3Y)Var(Ei,t[xt]− Ei,t−1[xt−1]) > 0.

It holds because the belief updating of trend and cyclical components is independent
(i.e., C̃OVs = 0) and the covariance between the changes in trend beliefs and cyclical
beliefs is zero, i.e., cov(Ei,t[µt]− Ei,t−1[µt−1], Ei,t[xt]− Ei,t−1[xt−1]) = 0. In addition, as
the forecast horizon h increases, the model predicts that COVh

F decreases with h, since
ρ is less than one.

Furthermore, in this special case, the forecast variance across forecasters can be
decomposed into two components:

Forecast dispersionth = E[(Fi,tyt+h − E[Fi,tyt+h])
2] = ρ2hϕC

s VarC
s + ϕT

s VarT
s , (12)

where ϕC
s = σ2

x /(σ2
x + σ2

e ) < 1, ϕT
s = σ2

µ/(σ2
µ + σ2

ϵ ) < 1 and E[·] is the mean forecast
across all forecasters. Note the dispersion of forecasts across forecasters is smaller
than the variance of individual forecasters’ beliefs because their information sets are
correlated. This explains why both ϕC

s and ϕT
s are less than one.

When the forecast horizon h increases, the dispersion across forecasters caused by
their noisy information on the cyclical component becomes less significant, i.e., ρ2h

decreases in h. However, the dispersion caused by their noisy information on the
trend component remains stable over the horizon. As a result, the total dispersion
decreases monotonically over the forecast horizon.

In summary, when trends and cycles are separable, the model fails to generate
either of the two empirical patterns documented. In fact, its predictions are exactly
opposite to the observed patterns in the data. We further extend this special case by
allowing the data generation process to be a general ARMA model instead of an AR(1).
However, this does not alter the model predictions. Further discussion of this result
is provided in Appendix B. Moving forward, we will elaborate on the scenario where
the two components are not perfectly separable. We will then explore the conditions
under which the model predictions can be reversed.

4.2 Covariance of Beliefs

The key difference between our benchmark model and the special case is that forecast-
ers jointly update their beliefs regarding the two components. As a result, their beliefs
about these two components are correlated, even when they are, in fact, independent.
In this section, we analyze the covariance between forecasters’ beliefs regarding trends
and cycles after they have observed their private signals.

The covariance between forecasters’ beliefs about the trend and cyclical compo-
nents, captured by C̃OV in Equation (9), is a crucial element of our model. This co-
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variance depends on the volatility of the two components as well as the persistence
of the cyclical component. Proposition 1 provides a detailed characterization of how
these factors determine the sign and magnitude of the covariance of beliefs.

Proposition 1. (i) The magnitude of the covariance between the trend and cyclical beliefs
|C̃OV| first increases and then decreases in the variance of trend innovations σ2

µ; and it is zero
when σ2

µ = 0 and converges to zero when σ2
µ goes to ∞. (ii) The magnitude of the covariance

increases with the persistence of the cyclical component (ρ). In particular, when ρ = 0, C̃OV =

0.

To understand part (i), recall the covariance is characterized by C̃OV = −ρσ2
ϵ σ2

e σ2
z /Ω.

As the variance of trend innovations (σ2
µ) increases, two effects emerge. Firstly, Lemma

4 has shown that forecaster i’s confusion, represented by σ2
z , increases. Secondly, fore-

caster i’s uncertainty about the state, represented by Ω, also increases. When the vari-
ance of trend innovations remains relatively small, the increase in confusion (σ2

z ) dom-
inates. Conversely, when it is relatively large, the increase in overall variance (Ω)
dominates.

Consider the following polar cases. When the trend is stable (i.e., σ2
µ = 0), there is

no confusion (i.e., σ2
z = 0). Therefore, the covariance is zero. When the trend innova-

tion is very large (i.e., σ2
µ → ∞), forecaster i’s uncertainty about the state is also very

large (i.e., Ω → ∞), the confusion mechanism becomes irrelevant, and the covariance
converges to zero too.

To understand part (ii), we first examine an extreme case where the persistence of
the cyclical component is zero (i.e., ρ = 0). That is, the cyclical component becomes
purely transitory, and our model reduces to a standard signal extraction problem. Con-
sequently, signals regarding the cyclical components offer information solely about the
cyclical components, which are uninformative for the trend components. Therefore,
the covariance of beliefs regarding the two components is rendered to be zero. As
the persistence (ρ) of the cyclical component increases, signals regarding the cyclical
components become more valuable for revising trend beliefs, giving rise to a larger
covariance in magnitude.

4.3 Covariance between changes of long-run forecasts and cyclical forecasts

In this section, we examine the model’s prediction for the covariance between changes
in long-run and cyclical forecasts, which can be constructed from the data. Interest-
ingly, we can relate the observable covariance in the data to the unobservable covari-
ance between trend and cyclical beliefs in the model. We show the necessary and
sufficient conditions under which our model can produce either a positive or negative
covariance between changes in long-run and cyclical forecasts, and that the magnitude
of the covariance decreases as the horizon h increases.
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We begin our analysis by decomposing both the changes in the long-run forecasts
and the cyclical forecasts. The changes in long-run forecasts is captured by changes in
the forecasts for h = 3Y periods ahead, which can be rewritten by:

Fi,tyt+3Y − Fi,t−1yt−1+3Y = (µi
1,t − µi

1,t−1) + ρ3Y(xi
1,t − xi

1,t−1).

The changes in the long-run forecasts therefore reflect one’s belief updates both in
trend component (i.e., µi

1,t − µi
1,t−1) and cyclical component (i.e., xi

1,t − xi
1,t−1). On

the other hand, the changes in the cyclical forecasts consist only the belief changes
regarding the cyclical component:

Cych
i,t − Cych

i,t−1 = (ρh − ρ3Y)(xi
1,t − xi

1,t−1). (13)

The covariance between the changes in the long-run forecasts and cyclical forecasts
can be written as follows:

cov(Fi,tyt+3Y − Fi,t−1yt−1+3Y, Cych
i,t − Cych

i,t−1) (14)

= (ρh − ρ3Y)︸ ︷︷ ︸
(+)

{
C̃OV + ρ3YVarC

}

︸ ︷︷ ︸
(+) or (−)

.

The covariance COVh
F can be positive or negative. For example, when a forecaster re-

ceives a signal indicating a stronger-than-expected cyclical component in the current
period, she tends to revise the cyclical forecasts upwards. That is, Cych

i,t −Cych
i,t−1 > 0.

However, she can revise the long-term forecast either upwards (Fi,tyt+3Y − Fi,t−1yt−1+3Y >

0) or downwards (Fi,tyt+3Y − Fi,t−1yt−1+3Y < 0).
On the one hand, since the long-term forecast is partially driven by cyclical compo-

nents, she may revise it upwards too. On the other hand, because the cyclical compo-
nent is persistent, she revises her belief about the previous period’s cyclical component
upwards. This revision leads her to adjust her belief about the previous period’s trend
component downwards. This mechanism is shown in Section 3.2 (see Equation 9).
It would suppress the estimate of trend component of the current period, causing a
downward adjustment of the long-term forecasts.

The covariance term can be further decomposed into two parts, as shown in the
second line of Equation (14). The first term, (ρh − ρ3Y), is always positive and its
magnitude depends on the forecast horizon h used to construct the cyclical forecasts.
It decreases as the horizon h increases. When the cyclical forecast is constructed using
the nowcast (i.e., h = 0), the first term reaches its largest value. As h approaches three
years (i.e., h = 3Y), the first term goes to zero.

The second term can be either positive or negative. It consists of the covariance be-
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Figure 4.1. The sign and the magnitude of the covariance between changes in the long-run forecasts
and cyclical forecasts. Figure 1(a) demonstrates the sign of the COVh

F . For a pair of state innovation
(σ2

µ, σ2
x ), the model predicts a negative covariance, if it lies inside Region I and a positive covariance if

it lies in Region I I. Figure 1(b) plots the COVh
F at horizon h = 0, 1, 2, 3, 4. The figure shows that the

magnitude of COVh
F is always decreasing in h.

tween trend and cyclical beliefs (i.e., C̃OV), and the variance of the cyclical belief (i.e.,
VarC), each corresponding to one of the two mechanisms discussed earlier. Proposi-
tion 2 presents the necessary and sufficient conditions for the sum of the two terms to
be negative.

Proposition 2. There exists a threshold σ2
µ for the variance of the trend component innovation,

such that:
(i) for any σ2

µ ∈ [σ2
µ,+∞), COVh

F is positive;
(ii) for any σ2

µ ∈ (0, σ2
µ), there exists a threshold σ2

x such that COVh
F is negative if and only if

σ2
x < σ2

x; and it is positive, otherwise;
(iii) and the magnitude of COVh

F is decreasing as the horizon h increases.

Figure 4.1 illustrates how the sign and the magnitude of COVh
F change, which is

characterized by Proposition 2. Figure 1(a) demonstrates the sign of COVh
F as the vari-

ance of the trend and cyclical innovation varies. For a pair of signal quality (captured
by σ2

ϵ and σ2
e ), the model predicts a negative covariance when the trend component is

moderately volatile, and the cyclical component is not excessively volatile.
As shown in Equation (14), the changes in long-run forecasts and cyclical forecasts

exhibit a negative covariance when C̃OV dominates. As shown in Proposition 1, this
scenario occurs when the trend component is neither too stable nor too volatile. That
explains item (i) in this proposition.

In addition, as the variance of the cyclical innovation (i.e., σ2
x) increases, the vari-

ance of belief changes concerning the cyclical component (represented by the second
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Figure 4.2. Dispersion decomposition as the horizon extends. Note: This figure shows how each part of
the dispersion changes as the forecast horizon extends.

term on the right-hand side of Equation (14)) also increases. If the cyclical component
is too volatile, the confusion mechanism becomes less relevant. We show the existence
of a threshold, σ2

x, for the volatility of cyclical components, such that changes in trend
forecasts and cyclical forecasts exhibit a negative covariance when σ2

x is lower than
this threshold. This explains item (ii) in this proposition.

Figure 1(b) shows that the magnitude of COVh
F decreases as the forecast horizon

increases. As Equation (13) shows, as h increases, changes in cyclical forecasts cor-
respond to a smaller proportion of cyclical updates. That is, (ρh − ρ3Y) decreases in
h. Therefore, the magnitude of the covariance decreases and converges to zero as the
forecast horizon h increases. That explains item (iii) in this proposition.

4.4 Forecast dispersion

We proceed to examine the prediction of our model regarding the relationship between
the forecast dispersion and the forecast horizon. In our model, the forecast dispersion
can either increase or decrease as the forecast horizon becomes longer. Proposition
3 characterizes the necessary and sufficient conditions for the forecast dispersion to
increase or decrease over the forecast horizon.

To expound the mechanism, we decompose the dispersion of forecasts across fore-
casters for any horizon into three components: the variance arising from heteroge-
neous beliefs about the trend component, the cyclical component, and their covari-
ance. To be specific, the forecast dispersion is given by:

E[(Fi,tyt+h − E[Fi,tyt+h])
2] = ρ2hVarCϕC + VarTϕT + 2ρhC̃OVϕCOV , (15)

where 0 < ϕC < 1, 0 < ϕT < 1 and 0 < ϕCOV < 1 are positive scalars, whose
expressions are collected in the proof of Proposition 3. Note that E[·] is the mean
forecast across all forecasters.

Figure 4.2 illustrates how each part changes as the forecast horizon extends. Fig-
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ure 2(a) shows that the variance from heterogeneous beliefs about the cyclical com-
ponent decreases when the forecast horizon extends. This reduction occurs because
the cyclical component’s influence diminishes in longer-term forecasts. Figure 2(b)
demonstrates that the variance due to heterogeneous beliefs about the trend compo-
nent remains constant across all horizons. This is expected, as the trend component’s
influence is consistent regardless of the forecast horizon. The behavior of these two
components over different horizons aligns with what is observed in the special case
(see section 4.1).

Figure 2(c) depicts the covariance term. Its magnitude decreases as the forecast
horizon extends, due to the diminished importance of the cyclical component over
longer horizons. This feature, though intuitive, is crucial for understanding our model’s
predictions. On the one hand, the covariance term is negative, reducing overall fore-
cast dispersion across forecasters for any horizon. On the other hand, as the forecast
horizon extends, the impact of the covariance term diminishes, leading to a force that
drives up the forecast dispersion.

The change in forecast dispersion over a longer horizon is determined by the rel-
ative strength of two forces: the diminishing force from dispersion due to heteroge-
neous beliefs about the cyclical component, and the increasing force from the covari-
ance term. Interestingly, in this model, forecast dispersion must increase with the fore-
cast horizon when h is large enough. The dispersion of cyclical beliefs converges to
zero more rapidly as the forecast horizon extends than the covariance between trend
and cyclical beliefs. This is evident from Equation (15): ρ2h converges to zero more
quickly than ρh. Therefore, when the forecast horizon is sufficiently long, the increas-
ing force of the covariance becomes dominant, leading to greater dispersion. Proposi-
tion 3 fully characterizes this property.

Proposition 3. The dispersion of forecasts across forecasters is strictly increasing in the fore-
cast horizon h, if and only if:

h > h =
1

ln ρ︸︷︷︸
−

ln
−C̃OV
VarC

ϕCOV

ϕC W
︸ ︷︷ ︸

− or +

; (16)

where W < 1 is a positive scalar given by E[(zi,t − E[zi,t])
2]/σ2

z and ln ρ < 0.

When the threshold is negative (h ≤ 0), forecast dispersion always increases over
the forecast horizon. This scenario occurs when the variance of the trend innovation
is moderate. As shown in Proposition 1, in such cases, the impact of the covariance
between trend and cyclical beliefs (i.e., C̃OV) is greatest.

Conversely, when the threshold value on the right-hand side of Equation (16) ap-
proaches infinity (h → ∞), forecast dispersion always decreases over the forecast hori-
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zon. This scenario occurs in the special case described in section 4.1, where forecasters
can perfectly differentiate between trend and cyclical components, resulting in a co-
variance term of zero.

5 Model Validation: Explicit Inflation Targeting

In the previous sections, we fully characterized our model and demonstrated how it
generates various qualitative empirical patterns depending on the parameter space.
Specifically, our model predicts that the covariance between changes in long-run fore-
casts and cyclical forecasts can be either positive or negative under certain conditions
of the data generating process. Similarly, forecast dispersion can either increase or
decrease over the forecast horizon depending on specific properties of the underlying
processes.

To validate these theoretical predictions, we leverage a policy shock: a policy change
that altered the underlying parameters of the data generating process. By examining
whether the observed changes in forecasting patterns following this policy shift align
with our model’s predictions, we can assess the validity of our model mechanism.

Specifically, we examine the effects of the introduction of explicit inflation targeting
in the United States in 2012. This new approach to monetary policy implementation
began with an announcement on January 25th by Ben Bernanke, the Chairman of the
U.S. Federal Reserve, who set a specific inflation target of 2%. Prior to this policy
change, the United States did not have an explicit inflation target, relying instead on
regularly announced desired target ranges for inflation.12

Through the lens of our model, the implication of this policy for forecasters is that
the underlying data generation process for inflation could undergo changes which
would necessitate changes in forecasting behaviors. To quantify the underlying changes
caused by the policy implementation, we begin by dividing the sample into two sub-
samples: the period before 2012 and the period after. We then structurally estimate the
model using moments obtained from both the pre- and post-2012 sub-samples. We
then assess the estimated changes in the data generation process and examine how
they impact the empirical patterns of forecasts quantitatively. While all the details of
the estimation are provided in Appendix A.6, we summarize the estimation proce-
dures below. Note that we use the ten-year-ahead forecasts of the inflation rate in the
SPF as the long-term forecasts because the SPF does not provide three-year-ahead fore-
casts for inflation. The ten-year-ahead forecast data have been available since 1991Q4.

12Before the era of the Greenspan Fed, the Federal Reserve operated under a stop-and-go policy
without a specific inflation target. Starting in 1992, the Greenspan Fed aimed to maintain low long-
term inflation rates (see Goodfriend 2004 for a comprehensive review). From the 1990s until the Great
Recession, there was a consensus among market participants and FOMC members that the optimal
inflation target would fall between 1% and 2%. However, there was no explicit inflation target (Shapiro
and Wilson 2019). In January 2012, the FOMC announced a target of 2% for the inflation rate, marking
the first time in its history that it adopted an explicit inflation-targeting approach.
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Table 5.1. Estimated Model Parameters

Parameter Estimation

Pre-2012 Post-2012

Mean 90 HPDI 95 HPDI Mean 90 HPDI 95 HPDI

σ2
µ 1.14 (0.96,1.38) (0.91,1.38) 0.84 (0.66,1.08) (0.61,1.08)

σ2
x 2.57 (2.41,2.67) (2.43,2.75) 2.60 (2.37,2.76) (2.40,2.88)

σ2
ϵ 0.78 (0.62,0.89) (0.61,0.95) 0.72 (0.48,0.89) (0.47,0.97)

σ2
e 1.62 (1.47,1.76) (1.47,1.77) 1.54 (1.31,1.74) (1.30,1.76)

ρ 0.84 (0.73,0.94) (0.74,0.97) 0.64 (0.53,0.76) (0.53,0.79)
Note: This table presents the estimated parameter values for the pre-2012 and post-2012
periods. We provide the mean values, as well as the 90% and 95% Highest Posterior
Density Intervals (HPDI).

Our model can be fully specified by five parameters: {ρ, σ2
µ, σ2

x , σ2
ϵ , σ2

e }. The first
three parameters are related to the data generating process, while the last two capture
the precision of the signals. To structurally estimate the values of these parameters,
we follow the approach of Chernozhukov and Hong (2003) and compute Laplace-type
estimators (LTE) using a Markov Chain Monte Carlo method. To identify changes in
the underlying parameters, we estimate them for each subsample period.

We estimated the model parameters by targeting the forecast variance across differ-
ent horizons in each subsample period. We then used the estimated model to simulate
data and examine the covariance patterns, which were not targeted in the estimation.
This approach allowed us to assess the model’s quantitative predictions about the ef-
fects of the policy shift in 2012.

To be concrete, we compute the across quarters average variances of forecasts for
different horizons, specifically for h = 0, 1, 2, 3, 4, using the subsamples before and
after 2012. These variances will be treated as the target moments in our estimation
and denoted as m̂. Furthermore, we construct the model counterpart of m̂ and define
the distance between the two as follows:

Λ(Θ) = [m(Θ)− m̂]′Ŵ[m(Θ)− m̂], (17)

where Ŵ is the weighting matrix, where the diagonal elements represent the precision
of the moments m̂. We solve for the parameter values (Θ) to minimize the constructed
distance, that is, finding the set of parameter values that best matches the forecast
variance at each forecast horizon.

The estimated parameters for each subsample are reported in Table 5.1 together
with the 90% and 95% high posterior density interval (HPDI). A comparison of the two
sets of estimated parameters reveals that there are minimal changes in the innovations
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(a) Forecast variance before 2012
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Figure 5.1. Forecast variance over horizon for the subsamples before and after 2012. Black dots represent
results from SPF data, while white dots depict simulated data. Figure 1(a) shows forecast variance before
2012, and Figure 1(b) illustrates it after 2012. The gray solid line marks the 95% confidence interval
using the bootstrap method. Our model fits the data closely in both sub-samples. The pre-2012 period
spans from 1990Q1 to 2011Q4, and the post-2012 period from 2012Q1 to 2019Q4.

in cycles variance (i.e., σ2
x) and the precision of signals on trends and cycles (i.e., σ2

ϵ

and σ2
e ) following the policy change in 2012. This indicates that this set of parameters

remain relatively stable before and after the policy change.
There are two noteworthy changes. First, there is a sizable decrease in the vari-

ance of trend innovation (i.e., σ2
µ). Before the policy change, the estimated variance

was 1.14. After the policy change, it dropped to 0.84. This suggests that the trend is
more stable after the policy implementation, consistent with the policy goal of pro-
viding a specific long-run target. Second, the persistence of the cyclical component
(i.e., ρ) decreases. Before the policy change, the estimated persistence of the cyclical
component was 0.84, aligning with previous literature. For instance, Carvalho et al.
(2023) estimated a value of ρ = 0.87. After the policy change, the estimated persistence
dropped to 0.64, indicating that short-term fluctuations have become less persistent.
The observed change in the estimated persistence of the cyclical component is intu-
itive. Following the policy change, the central bank would respond more aggressively
to short-term deviations from the long-term target. Consequently, the persistence of
the cyclical component would decrease.

Next, we investigate whether the estimated model can reproduce the set of findings
documented in Section 2 concerning inflation forecasts before and after 2012. First, we
examine the forecast variance across various forecast horizons, which were targeted
moments in the estimation. Figure 5.1 displays the forecast variance of the SPF data
and the simulated data before and after 2012. The black dots represent results obtained
using the SPF data, while the white dots represent the simulated data. The gray solid
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Figure 5.2. The estimated COVh
F for the subsamples before and after 2012. Black dots represent the

results obtained using SPF data, while white dots represent the simulated data. In Figures 2(a) and
2(b), we observe that the covariance is negative before 2012 and positive or close to zero after 2012.
The sample period for the pre-2012 sub-sample ranges from 1990Q1 to 2011Q4, while the post-2012
sub-sample spans from 2012Q1 to 2019Q4.

line corresponds to the 95% confidence interval using the bootstrap method. In both
sub-samples, the simulated models closely fit the empirical data.

In the SPF data, a notable difference between the two sample periods is observed:
the forecast variance declines more rapidly as the forecast horizon extends in the post-
2012 sub-sample compared to the pre-2012 period. Specifically, in the pre-2012 sub-
sample, the forecast variance decreases by 32.5%, from 0.833 at the now-cast (h = 0) to
0.562 for forecasts one quarter ahead. In contrast, the post-2012 subsample exhibits a
much sharper decline of 52.5%, with the variance dropping from 0.737 at the now-cast
to 0.350 for one-quarter-ahead forecasts.

The change in empirical patterns across the two periods aligns qualitatively with
our model’s predictions. According to Proposition 1, when the trend component be-
comes more stable (i.e., σ2

µ decreases) and the cyclical component becomes less persis-
tent (i.e., ρ decreases), the magnitude of the negative covariance between trend and
cyclical beliefs decreases. This is because, as the trend component becomes more sta-
ble, forecasters can better separate the trend from the cycle; and as the persistence of
the cyclical component decreases, new information about the cyclical component be-
comes less relevant for updating the trend component. As a result, the force from the
confusion mechanism plays a less important role, and the overall forecast dispersion
decreases at a faster rate.

Second, we examine the covariance between changes in the long-run forecasts and
cyclical forecasts in both sub-samples. It is important to stress that this covariance was
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not a targeted moment in the estimation.
The empirical results from the SPF data reveal an intriguing shift in forecasting

behavior. Figure 2(a) shows a significant negative covariance between changes in long-
run forecasts and cyclical forecasts in the pre-2012 sub-sample. In constrast, Figure
2(b) illustrates that this covariance becomes positive and insignificant in the post-2012
sub-sample.

This reversal in sign following the implementation of inflation targeting aligns with
our model’s prediction. As previously discussed, when the trend component becomes
more stable and the cyclical component less persistent, the confusion mechanism’s ef-
fect weakens. Consequently, the empirical covariance patterns should more closely
match those predicted by the observable-trend model in section 4.1, where the con-
fusion mechanism is absent. Our model predicts that after the policy change, the co-
variance between changes in trend forecasts and changes in cyclical forecasts is more
likely to be non-negative.

Qualitatively, the estimated results from the simulated data closely align with the
empirical results using the SPF data in both subsamples. Figure 5.2 contrasts the re-
sults in the SPF data with those from the simulation data. Despite its simplicity and
limited number of parameters, our model effectively captures the shift in forecasting
patterns following the policy change and quantitatively reproduces the changes ob-
served in the actual data.

6 Rational Confusion and Behavioral Bias

In the previous sections, we show how the confusion mechanism plays a role by as-
suming that forecasters are rational and use the Bayesian rule to update their beliefs.
In this section, we demonstrate that our framework can be extended to incorporate
behavioral biases studied in the literature on expectation formation. We emphasize
that the new confusion mechanism we introduce can interact with these biases and
provide insights into various issues in the literature.

Specifically, we showcase this by introducing the feature of overconfidence, where
forecasters subjectively believe that the variances of the signal noise are smaller than
their actual values (e.g., Daniel et al. 1998 and Broer and Kohlhas 2024). We demon-
strate how this extension of the benchmark model could address why now-cast errors
might persist across periods, which is a well-known puzzle in the literature on expec-
tation formation.

Following Ma et al. (2020), we examine the correlation between the now-cast errors
across periods, using the SPF data. To be specific, we estimate the following equation:

yt − Fi,tyt︸ ︷︷ ︸
FEi,t

= α + β(yt−1 − Fi,t−1yt−1︸ ︷︷ ︸
FEi,t−1

) + ϵi,t, (18)
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Table 6.1. Forecast error persistence

Dependent Variable: Now-cast error

β SE
ObsForecast Variable (1) (2)

Nominal GDP 0.154*** 0.048 5,872
Real GDP 0.194*** 0.057 5,907
GDP price index inflation 0.147** 0.064 5,803
Real consumption -0.109* 0.064 4,122
Industrial production 0.303*** 0.084 5,497
Real nonresidential investment 0.070 0.073 4,046
Real residential investment 0.120** 0.059 4,038
Real federal government consumption -0.066 0.081 3,880
Real state and local government consumption 0.040 0.062 3,800
Housing start 0.261*** 0.060 5,599
Unemployment 0.192*** 0.056 5,489
Inflation (CPI) 0.044 0.065 4,188
Note: This table shows the coefficients obtained from estimating Equation (18). The sample period
is from 1968Q4 to 2019Q4. Standard errors are clustered at the year-quarter level.

Table (6.1) displays the estimation results. In column (1), we observe that the estimated
coefficient is significantly positive for the majority of macro variables. This suggests
that the forecast error exhibits persistence over time: a larger (lower) now-cast error
in the previous period is associated with a larger (lower) now-cast error in the current
period.

This set of estimation results has two important implications. Firstly, in our bench-
mark model without behavioral bias, the estimated coefficients should be zero. It is
straightforward that the now-cast error in the last period is already known to the fore-
casters when they provide their forecast in the current period. Therefore, the now-cast
error across periods should be independent when the forecasters are fully rational. The
significant estimated coefficients arising from this estimation indicate that forecasters
deviate from the rational benchmark, highlighting the necessity of incorporating be-
havioral bias in our model.

Secondly, in a model where the confusion mechanism is absent and forecasters
are overconfident, the now-cast errors across periods should still be zero. This is be-
cause the now-cast error in each period consists only of a weighted average of the
state innovation and the signal noise. Overconfidence distorts the weights assigned
to each component. However, both the innovations and signal noises are indepen-
dent across periods; therefore, the correlation between now-cast errors across periods
remains zero.

In the following, we investigate how the interplay between the two mechanisms –
confusion and overconfidence – could account for this the documented empirical pat-
tern. Specifically, to incorporate overconfidence, we consider a scenario where fore-
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casters perceive the signal variances of the trend and cyclical components as m1σ2
ϵ and

m2σ2
e respectively. When m1 < 1 (m2 < 1), it indicates that forecasters subjectively

believe the trend (cyclical) signal is more precise than it actually is.

Proposition 4. (i) When forecasters are overconfident in the trend signal (m1 < 1), the now-
cast errors across periods are positively correlated if and only if

ρσ2
e σ2

µ

σ2
ϵ [σ

2
x + (1 − ρ)σ2

e ]
= m1 < m1 < 1, (19)

and negatively correlated otherwise. (ii) When forecasters are overconfident in the cyclical
signal (m2 < 1), the now-cast errors across periods are positively correlated if and only if

1 <
1

m2
<

1
m2

=
σ2

e [ρσ2
µ − (1 − ρ)σ2

ϵ ]

σ2
ϵ σ2

x
(20)

and negatively correlated otherwise.

To explicate the proposition, we observe that the now-cast error of period t consists
of three parts: the state innovations of period t, the noise of the new signals, and the
separation error inherited from the previous period (zi,t−1). Since the state innovations
and the noise in the private signals are independent across periods, the component of
the now-cast error generated by the current state innovation and signal noise must be
independent of the now-cast error from the previous period (FEi,t−1). In other words,
the correlation between the now-cast errors in the last period (FEi,t−1) and the current
period (FEi,t) must be driven by their correlations with the separation error from the
last period (zi,t−1).

First, we analyze the correlation between the separation error from the previous
period (zi,t−1) and the now-cast error from that same period (FEi,t−1). We show that
the covariance between these two errors is given by:

cov(zi,t−1, FEi,t−1) = −(1 − m1)σ
2
ϵ σ2

e ϕT
O

V1

Ω1
≤ 0, (21)

where ϕT
O is a positive scalar, and V1 and Ω1 are counterparts of V and Ω, respectively.

Detailed expressions of these variables are provided in Appendix B.
In the Bayesian benchmark (i.e., m1 = 1), as implied by Equation (21), the covari-

ance would be zero. Intuitively, the forecast error zi,t−1 must be orthogonal to any
information already known to the forecasters (FEi,t−1) under rational expectation.

When forecasters exhibit overconfidence in trend signals (i.e., m1 < 1), Equation
(21) dictates that the covariance is always negative. In such cases, forecasters’ beliefs
about trends rely more on the trend signal relative to the Bayesian benchmark. There-
fore, both the separation error and their now-cast will move in the same direction,
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Figure 6.1. The now-cast, now-cast error and the separation error in period t − 1 under overconfidence.
Note: The figure plots the now-cast, now-cast error, and separation error for period t − 1 at a given level
of overconfidence m1 < 1. When forecasters are overconfident, compared to the rational benchmark, last
period’s now-cast and separation error move in the same direction, while the now-cast error moves in
the opposite direction.

while the now-cast error moves in the opposite direction.
To illustrate, consider a case where the trend signal contains a positive surprise in

period t − 1. The overconfident forecaster would assign a higher weight to this sur-
prise and overestimate the trend component. Consequently, the now-cast from period
t − 1 (i.e., Fi,t−1yt−1) exceeds what a Bayesian forecaster would predict. Therefore, the
corresponding now-cast error, FEi,t−1, which is the difference between now-cast and
the realization yt−1, is lower than the Bayesian benchmark. Similarly, the separation
error, zi,t−1, which is the difference between the trend belief after observing realization
yt−1, is also higher than in the rational case. As a result, the covariance between the
separation error and the now-cast error from period t − 1 is no longer zero; it becomes
negative.

Then, we turn to analyze how this separation error (zi,t−1) affects the now-cast error
in the current period (FEi,t). When forecasters are overconfident in the trend signal, the
covariance between the separation error and the now-cast error for the current period
can be written as follows:

cov(zi,t−1, FEi,t) =
σ2

z
Ω1

[−m1σ2
ϵ (σ

2
x + σ2

e )︸ ︷︷ ︸
trend prior e f f ect

+ ρσ2
e (σ

2
µ + m1σ2

ϵ )]︸ ︷︷ ︸
cyclical prior e f f ect

. (22)

Recall that the separation error inherited from period t − 1 is present in the prior
belief for period t, and it exerts opposite effects on prior beliefs regarding trend and
cyclical components (see Equation (7)). Specifically, if the separation error zi,t−1 is
positive, compared to the case without a separation error, the trend prior leads to a
larger now-cast and a lower FEi,t; whereas the cyclical prior leads to a smaller now-
cast and a larger FEi,t. That is why the effect of the trend prior is negative and the
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Figure 6.2. Now-cast Error in Period t and Extent of Overreaction.
Note: The figure illustrates how the now-cast error changes with varying degrees of overreaction, given
a positive separation error carried over from the previous period t − 1.

effect of the cyclical prior is positive in Equation (22).
To illustrate, we consider a scenario where the overconfident forecaster inherits a

positive separation error from the previous period (i.e., zi,t−1 > 0). We start with the
extreme case where m1 = 0. In this case, the forecaster’s trend belief relies entirely on
the newly observed trend signal in the current period t. Consequently, their now-casts
are unaffected by trend priors. The inherited separation error affects the now-cast of
the current period only through the cyclical prior. As a result, a positive separation
error decreases the cyclical prior and correspondingly the now-cast, resulting in a pos-
itive now-cast error.

As m1 increases, indicating a decrease in the extent of overconfidence, forecasters
give more weight to trend priors. In this scenario, a positive separation error, which
corresponds to a higher trend prior, drives the now-casts to rise and the now-cast error
to decline. When m1 > m1, the influence of the trend prior becomes dominant, leading
to a negative now-cast error. Therefore, the covariance between the separation error
and the now-cast error is negative if and only if m1 < m1.13

To summarize, Part (i) of Proposition 4 states that when both the confusion and
overconfidence mechanisms are present, the now-cast errors can be positively corre-
lated over time, on condition that the extent of overconfidence in the trend signal is
moderate and smaller than a threshold. Table 6.2 summarizes the correlations between
the now-cast error in the previous period, the now-cast error in the current period, and
the separation error.

13When m1 = 1, it reduces to the Bayesian case, and the covariance cov(zi,t−1, FEi,t) is still negative.
In this case, since cov(zi,t−1, FEi,t−1) = 0, we have still cov(FEi,t−1, FEi,t) = 0.
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Table 6.2. Overconfidence, Confusion and Forecast Error Persistence

Overconfident Cov(FEi,t−1, zi,t−1) Cov(zi,t−1, FEi,t) Cov(FEi,t−1, FEi,t)

Trend signal Negative Negative, iif. m1 < m1 Positive, iif. m1 < m1 < 1

Cyclical signal Positive Positive, iif. m2 < m2 Positive, iif. m2 < m2 < 1

Furthermore, note that the inequality in Equation (19) characterizes the condition
under which the effect of the trend prior dominates the effect of the cyclical prior.
Consider the case where the cyclical is very volatile, that is, σ2

x is large enough and
as a result m1 converges to zero. Forecasters would place very limited reliance on
the prior belief regarding the cyclical component and rely heavily on new information
about the cycle. Therefore, the effect of the trend prior always dominates, which drives
a negative correlation between the separation error and the now-cast error of the cur-
rent period. As a result, the covariance between the now-cast errors across periods is
positive for any m1 < 1.

The analysis of the case where forecasters are overconfident about the cyclical sig-
nal is analogous. We relegate the relevant discussion in Appendix C.2.

7 Discussions

In this section, we discuss several alternative modeling approaches and demonstrate
the robustness of our framework. Our benchmark model deliberately employs a sim-
plified information structure to highlight the core mechanism at work, but the insights
extend to more elaborated specifications.

First, we examine the case where forecasters not only observe the actual state value
but also the forecasts made by their peers across various horizons. That is, we assume
that at the end of period t, forecaster i observes both the current period’s actual state
value and the distribution of Fi,tyt+h across all forecasters. We will show that this
additional information enhances the forecasters’ estimates regarding both trend and
cyclical components. However, despite this expanded information set, forecasters still
cannot perfectly distinguish between the trend and cyclical components.

The key intuition is as follows. In our model, the individual forecast error com-
prises both the individual-specific forecast error and the common forecast error. The
individual-specific forecast error arises from the noise term in the private signals (i.e.,
ϵi,t and ei,t), while the common forecast error arises from the state innovations (i.e.,
γ

µ
t and γx

t ). The observation of forecasts from others helps to eliminate the individual-
specific error and reduce the separation error. Consequently, forecaster i would anchor
to the consensus beliefs after observing the entire distribution, as it includes only the
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common forecast error. Appendix C.3 provides a complete characterization.
After observing the forecasts of others, the separation error, zi,t, becomes common

across all forecasters (i.e., zi,t = zj,t for any i, j). We denote this common separation er-
ror as zt. Importantly, we show that zt is a weighted average of the consensus forecast
errors regarding the two components and only includes the state innovations, which
is non-zero. This implies that they still cannot perfectly separate the trend and cyclical
components, and the key results from our benchmark model continue to hold.

Second, we examine a scenario in which forecasters cannot observe the actual state
value or the signals directly related to the trend and cyclical components. Instead,
in each period, they receive a private, noisy signal of the state variable yt. In this
context, similar to our model, the covariance between changes in long-run beliefs and
cyclical beliefs can be either negative or positive. However, forecast dispersion across
forecasters always decreases as the forecast horizon extends.

The key intuition is as follows. In our model, the negative covariance between
trend beliefs and cyclical beliefs arises from both state innovations and signal noise.
When analyzing the covariance between changes in long-run and cyclical beliefs, both
channels play a crucial role, since either a larger trend state innovation or a larger trend
signal can lead to a higher trend belief and a lower cyclical belief. Regarding forecast
dispersion, since state innovation affects all forecasters equally, it does not influence
the dispersion. Only the channel from private signals remains influential, which is
captured by ϕCOV in Equation (15). If one forecaster receives a higher trend signal than
others, the forecaster will exhibit both a higher trend belief and a lower cyclical belief
than the average. This is the key mechanism drives the increasing forecast dispersion.

In contrast, in the alternative setting where forecasters only observe a noisy signal
regarding the state variable yt , the private signal affects trend and cyclical beliefs in
the same direction. A large positive signal surprise could indicate both a large trend
innovation and a large cyclical innovation. Consequently, if one forecaster receives a
higher signal than others, that forecaster will have both a higher trend belief and a
higher cyclical belief than the average, thus eliminating the previously mentioned key
mechanism. In Appendix C.4, we present a simple example to illustrate the intuition.

Second, we examine an alternative approach to modeling trend-cycle confusion
and compare its implications with those of our model. Specifically, we consider a
scenario where the source of confusion arises from misinterpreting signals. In this
model, forecasters can observe both components at the end of each period. However,
they may misinterpret the signals before making forecasts, mistaking a trend signal
for a cyclical one or vice versa. We summarize the findings and intuitions below; a
detailed illustration is available upon request.

In one such model, forecast dispersion may increase as the forecast horizon extends
under certain conditions. The confusion between trends and cycles arises from only a
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fraction of forecasters misinterpreting the signals, which leads to a negative covariance
between the cross-forecaster mean trend and cyclical beliefs at the aggregate level. For
instance, when a positive trend signal is given, a group of forecasters misinterprets it
as a cyclical signal. This misinterpretation results in lower mean trend beliefs across all
forecasters than would be the case without misinterpretation, and higher mean cycli-
cal beliefs across all forecasters. This mechanism weakens over the forecast horizon,
constituting a force that drives up forecast dispersion.

However, in this alternative model, the covariance between an individual’s trend
beliefs and cyclical beliefs is zero (C̃OV = 0); therefore, the covariance between changes
in long-term and cyclical forecasts is always positive (COVh

F ≥ 0), which contradicts
our empirical findings. This occurs because forecasters can perfectly separate the two
components at the end of each period (i.e., σ2

z = 0). Therefore, forecasters would up-
date their beliefs regarding the trend and cyclical components independently, a key
difference from our model.

8 Conclusion

This paper introduces a framework where forecasters face rational confusion in distin-
guishing between trend and cyclical components of state variables. We show that this
key feature accounts for a range of forecasting patterns at both individual and aggre-
gate levels. Our quantitative validation examines the 2012 inflation targeting policy,
demonstrating that the resulting changes in empirical forecasting behavior align with
our model’s predictions.

We further show how our framework accommodates behavioral biases, with the
interaction between rational confusion and overconfidence accounting for persistent
now-cast errors – a notable puzzle in expectation formation literature.

The applications of this framework extend beyond forecasting to any context where
individuals have to disentangle two persistent but imperfectly separable processes.
Potential applications include investors separating sectoral from firm-specific earnings
components, or voters distinguishing between candidate quality and circumstantial
factors. We leave the development of those applications to future work.
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Appendix

A Data and Robustness Tests

A.1 Sample periods and variable definition

The data used in this paper are from the Survey of Professional Forecasters (SPF). Table
A.1 provides a list of the periods for which each forecast variable is available.

Table A.1. Summary of sample periods

Summary of sample periods

Forecast Variable Sample periods

Panel A. Short-term Forecasts.
Nominal GDP 1968Q4 - 2019Q4
Real GDP 1968Q4 - 2019Q4
GDP price index inflation 1968Q4 - 2019Q4
Real consumption 1981Q3 - 2019Q4
Industrial production 1968Q4 - 2019Q4
Real nonresidential investment 1981Q3 - 2019Q4
Real residential investment 1981Q3 - 2019Q4
Real federal government consumption 1981Q3 - 2019Q4
Real state and local government consumption 1981Q3 - 2019Q4
Housing start 1968Q4 - 2019Q4
Unemployment 1968Q4 - 2019Q4
Inflation (CPI) 1981Q3 - 2019Q4
Three-month Treasury rate 1981Q3 - 2019Q4
Ten-year Treasury rate 1992Q1 - 2019Q4

Panel B. Long-term Forecasts.
Three-year ahead Real GDP 2009Q2-2019Q4
Three-year ahead unemployment 2009Q2-2019Q4
Ten-year ahead inflation (CPI) 1991Q3-2019Q4
Ten-year ahead Real GDP 1992Q1-2019Q1; first quarter only
Natural rate of unemployment 1996Q3-2019Q3; third quarter only

Following Bordalo et al. (2020), we convert macroeconomic variables to annual
growth rates. For variables that are already presented as rates, we use the original
data directly.

Variables changed to the annual growth rate include nominal GDP (NGDP), real
GDP (RGDP), GDP price index inflation (PGDP), real consumption (RCONSUM), In-
dustrial production (INDPROD), real nonresidential investment (RNRESIN), real resi-
dential investment (RRESINV), real federal government consumption (RGF), real state
and local government consumption (RGSL). Forecast of h period ahead: Fi,tyt+h =

(
Fi,t ỹt+h
ỹt+h−4

− 1) × 100, where Fi,tỹt+h is the original survey forecast from the forecaster i
provided in period t regarding the state variable ỹ in h period ahead. ỹt+h−4 is the ac-
tual state value of period t + h − 4 already released. The procedures are a replication
of Bordalo et al. (2020).

Variables that are taken directly from the survey data include unemployment rate
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(UNEMP), housing start (HOUSING), CPI, Three-month Treasury rate (Tbills), Ten-
year Treasury rate (Tbonds).

A.2 Three years ahead forecast and forecasts of longer horizon

(a) Real GDP (b) Unemployment

Figure A.1. Three-year-ahead forecasts and forecasts for longer horizons. Note: The sample period is
from 2009 to 2019, based on data availability. Forecasts of the natural unemployment rate are only
available in the third quarter survey, while forecasts of ten-year-ahead real GDP are only available in
the first quarter survey. Figure 1(a) illustrates the real GDP forecasts for three years ahead and ten
years ahead. Figure 1(b) shows unemployment forecasts for three years ahead and the natural rate of
unemployment. The correlation between the three-year horizon forecasts and longer-horizon forecasts,
as depicted in the upper two figures, is 0.903 for real GDP growth and 0.886 for unemployment.

A.3 Estimation Results: Covariance between changes in long-term forecasts and
cyclical forecasts

Table A.2. Covariance between changes in long term forecasts and cyclical forecasts

Covariance between changes in long term forecasts and cyclical forecasts

COVh
F 95% bootstrap CI Obs

Panel A. Unemployment rate
h = 0 -0.203 (-0.244, -0.161) 794
h = 1 -0.192 (-0.232, -0.152) 815
h = 2 -0.177 (-0.214, -0.139) 819
h = 3 -0.164 (-0.199, -0.129) 817
h = 4 -0.151 (-0.183, -0.118) 818

Panel B. Real GDP growth
h = 0 -0.219 (-0.273, -0.164) 783
h = 1 -0.214 (-0.271, -0.156) 781
h = 2 -0.204 (-0.260, -0.147) 785
h = 3 -0.204 (-0.258, -0.149) 785
h = 4 -0.202 (-0.256, -0.148) 785
Note: This table shows the covariance between the changes in long-term
forecasts and cyclical forecasts. The sample period is from 2009Q2 to
2019Q4. Panel A shows the results of the unemployment rate, while Panel
B shows the results of the Real GDP growth.

A.4 Robustness: ECB-SPF

This subsection presents estimation results using the European Central Bank’s Survey
of Professional Forecasters (ECB-SPF). The ECB-SPF is a quarterly survey collecting
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data on expected inflation, real GDP growth, and unemployment rates in the euro
area. Each quarter, approximately 50 professional forecasters participate, providing
forecasts for the current and following year. Forecasts for two years ahead were avail-
able only in Q3 and Q4 surveys from 2001 to 2012, but have been included in all survey
waves since 2013. Since 2001, the survey has included a question on long-term eco-
nomic conditions. This question solicits forecasts for four years ahead in Q1 and Q2
surveys, and five years ahead in Q3 and Q4 surveys. We use these four- and five-year-
ahead forecasts as our long-run forecasts.
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Figure A.2. Covariance between the changes in long-run forecasts and cyclical forecasts across forecast
horizons h. Note: This figure illustrates the covariance COVh

F for the unemployment rate, inflation
and the real GDP growth across various forecast horizons h using the ECB-SPF data. The upper three
figures show the estimation result using the Q1 and Q2 data. The lower three figures show the estimation
result using the Q3 and Q4 data. In all cases, the covariance is negative and statistically significant,
increasing as the forecast horizon extends. The black dots represent the estimates, and the gray solid
lines denote the 95% confidence intervals. The sample period is from 2001Q1 to 2019Q4.

Figure A.2 presents the estimation results of Equation (1) using ECB-SPF data.
Horizons h = 0, 1, 2 correspond to forecasts for the current year, one year ahead, and
two years ahead, respectively. Because Q1/Q2 surveys request forecasts four years
ahead, while Q3/Q4 surveys request forecasts five years ahead, we split the data into
two subsamples. The upper panels of Figure A.2 use the Q1/Q2 subsample (cyclical
belief = h-horizon forecast minus four-year-ahead forecast). The lower panels use the
Q3/Q4 subsample (cyclical belief = h-horizon forecast minus five-year-ahead forecast).
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For all variables, the estimated coefficients COV0
F are negative, statistically significant,

and increasing in h, consistent with the results in the main text.
Table A.3 presents the estimation results from Equation (2) using ECB-SPF data.

These results are consistent with those in the main text. For unemployment and real
GDP growth, the estimated coefficients are statistically positive. For inflation, the coef-
ficient is statistically positive but small when using forecast variance as the dispersion
measure, and non-significant when using the interquartile range (75th minus 25th per-
centile).

Table A.3. Forecast dispersion over forecast horizon

Dependent Variable: Forecast Dispersion

Variance of forecasts 50 percentile difference

Obsβ1 SE β1 SE

Forecast Variable (1) (2) (3) (4)

Unemployment rate 0.122*** 0.006 0.182*** 0.007 280
Real GDP growth 0.006*** 0.002 0.022*** 0.005 280
Inflation rate 0.003** 0.001 0.002 0.004 280
Note: This table shows results from estimating Equation (2) using the ECB-SPF
data. The sample period is from 2001Q1 to 2019Q4. In column (1), the dependent
variable is the variance of forecasts across forecasters. In column (3), we use the
difference between the 25% percentile and 50% percentile. Standard errors are
clustered at the year-quarter level.

A.5 Robustness: Forecast dispersion over forecast horizon with time fixed effect

Table A.4. Forecast dispersion over forecast horizon with time FE

Dependent Variable: Forecast Dispersion

Variance of forecasts 50 percentile difference

Time FE Obsβ1 SE β1 SE

Forecast Variable (1) (2) (3) (4)

Nominal GDP 0.337*** 0.014 0.204*** 0.005 Yes 1,025
Real GDP 0.242*** 0.013 0.162*** 0.004 Yes 1,025
GDP price index inflation 0.118*** 0.005 0.119*** 0.003 Yes 1,025
Real consumption 0.125*** 0.008 0.127*** 0.004 Yes 770
Industrial production 0.860*** 0.034 0.320*** 0.009 Yes 1,025
Real nonresidential investment 1.647*** 0.068 0.497*** 0.012 Yes 770
Real residential investment 6.021*** 0.299 0.932*** 0.026 Yes 770
Real federal government consumption 1.284*** 0.065 0.393*** 0.013 Yes 770
Real state and local government consumption 0.317*** 0.016 0.210*** 0.006 Yes 770
Housing start 0.004*** 0.000 0.020*** 0.001 Yes 1,024
Unemployment 0.034*** 0.001 0.082*** 0.002 Yes 1,014
Inflation rate (CPI) -0.066*** 0.013 -0.073*** 0.008 Yes 770
Three-month Treasury rate 0.053*** 0.002 0.106*** (0.003 Yes 770
Ten-year Treasury rate 0.045*** 0.001 0.094*** 0.002 Yes 560
Note: This table shows the coefficients from estimating Equation (2) with year-quarter fixed effect. The sample period is from
1968Q4 to 2019Q4. In column (1), the dependent variable is the variance of forecasts. In column (3), the dependent variable
is the difference between the 25% percentile and 50% percentile. Standard errors are clustered at the year-quarter level.
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A.6 Estimation procedures: Inflation

To estimate the set of parameters Θ = {ρ, σ2
µ, σ2

x , σ2
e , σ2

ϵ} before and after 2012, we begin
by dividing the entire dataset into two subsets: one before 2012 and one after 2012. For
each subset, we compute the average forecast variance for different forecast horizons
(h = 0, 1, 2, 3, 4). These sets of forecast variances serve as the targets for estimation
denoted as m̂.

Since we want to capture the forecast variance across all the horizons, we give
equal weights to all the targeted moments. Table A.5 provides the summary statistic
of the estimation moments.

Table A.5. Estimation Moments

Estimation Moments

Pre-2012 Post-2012

Target SE Target SE

h=0 0.833 1.276 0.737 0.693
h=1 0.562 0.568 0.350 0.182
h=2 0.464 0.370 0.303 0.123
h=3 0.429 0.324 0.284 0.103
h=4 0.430 0.282 0.301 0.071

The distance is defined in Equation (17) as the weighted squared difference be-
tween the target moments m̂ and the model prediction m(Θ), which represents the
moments implied by the model for the given parameter set (Θ). Using MCMC with
the Metropolis-Hastings algorithm, we choose the set of model parameters that min-
imize the distance Λ(Θ). The estimation of the parameter set before and after 2012
follows the exact same procedures, with different estimation targets derived from the
respective subsets of the data.

B Proofs

Characterization of special case when the trend is observable in section 4.1.
Consider a special case where both the state and trend components are observable

at the end of each period. Without loss of generality, we assume the cyclical compo-
nent follows an AR(N) process:

xt =
N

∑
h=0

ρhLhxt + γx
t ,

where L is the lag operator.
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The private signal of forecaster i is given by:

sµ
i,t = µt + ϵi,t and sx

i,t = xt + ei,t.

Given the trend component is observable at the end of each period, one’s prior
belief before observing the signals is:

θi
2,t−1 =

(
µt−1

∑N
h=0 ρhLhxt

)
.

The posterior beliefs regarding the two components upon observing the signals is
given by:

θi
1,t = θi

2,t−1 + κ× (si,t − θi
2,t−1),

where the Kalman gain matrix and the variance-covariance matrix is same as the ones
in the main text:

κ =




σ2
µ

σ2
µ+σ2

ϵ
0

0 σ2
x

σ2
x+σ2

e


 , and

(
VarT

s C̃OVs

C̃OVs VarC
s

)
=




σ2
ϵ σ2

µ

σ2
ϵ+σ2

µ
0

0 σ2
e σ2

x
σ2

x+σ2
e


 .

The forecast variance across forecasters is given by:

E[(Fi,tyt+h − E[Fi,tyt+h])
2] = ρ2h σ2

x
σ2

x + σ2
e︸ ︷︷ ︸

ϕC
s

VarC
s +

σ2
µ

σ2
µ + σ2

ϵ︸ ︷︷ ︸
ϕT

s

VarT
s

= ρ2h(
σ2

x
σ2

x + σ2
e
)2σ2

e + (
σ2

µ

σ2
µ + σ2

ϵ
)2σ2

ϵ .

It is evidence that the forecast variance across forecasters is decreasing, as the forecast
horizon extends.

In addition, changes in trend forecasts and changes cyclical forecasts can be written
as follows:

Fi,tyt+3Y − Fi,t−1yt−1+3Y = (µi
1,t −Ei,t−1[µt−1])+ ρ3Y(Ei,t[

N

∑
h=0

ρhLhxt+3Y]−Ei,t−1[
N

∑
h=0

ρhLhxt+3Y−1]),

and

Cyci,t − Cyci,t−1 = (1 − ρ3Y)(Ei,t[
N

∑
h=0

ρhLhxt+3Y]− Ei,t−1[
N

∑
h=0

ρhLhxt+3Y−1]).

Following the same logic as the main text, the covariance between changes in the be-
liefs about the trend component and changes in beliefs about the cyclical component
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at any horizon should be non-negative. That is,

COVh
F (Fi,tyt+3Y − Fi,t−1yt−1+3Y, Cyci,t − Cyci,t−1)

= ρ3Y(1 − ρ3Y)Var(Ei,t[
N

∑
h=0

ρhLhxt+3Y]− Ei,t−1[
N

∑
h=0

ρhLhxt+3Y−1]) ≥ 0.

In this special case, where trends and cycles are observable at the end of each period,
the model fails to replicate either of the two empirical patterns documented, even
when we allow the data generation process for the cyclical component to follow an
AR(N) process.

Proof of Lemma 1. To begin, we assume that the error term in the last period (zi,t−1)
is normally distributed with the variance σ2

z,t−1. With the prior belief and the signal
structures given by Equation (6) and (7), the posterior belief of forecaster i after receiv-
ing signals is given by:

p(θ|si,t) ∝ p(θi
2,t−1)p(si,t|θi

2,t−1)

∝ exp
{
−1

2
[θT(Σ−1

s + Σ−1
θi

2,t−1
)θ− 2(Σ−1

s + Σ−1
θi

2,t−1
)−1(Σ−1

s + Σ−1
θi

2,t−1
)(sT

i,tΣ
−1
s + θi,T

2,t−1Σ−1
θi

2,t−1
)θ]

}

∝ exp[−1
2
(θ− θi

1,t)
T(Σ−1

s + Σ−1
θi

2,t−1
)(θ− θi

1,t)],

where
θi

1,t = (Σ−1
s + Σ−1

θi
2,t−1

)−1(sT
i,tΣ

−1
s + θi,T

2,t−1Σ−1
θi

2,t−1
)T.

Therefore, µi
1,t and xi

1,t are joint normally distributed. To be specific, θi
1,t = (µi

1,t, xi
1,t)

′

is given by:

µi
1,t =

σ2
ϵ (ρ

2σ2
z,t−1 + σ2

x + σ2
e )

Ωt︸ ︷︷ ︸
prior weight

µi
2,t−1 +

Vt + σ2
e (σ

2
z,t−1 + σ2

µ)

Ωt︸ ︷︷ ︸
signal weight

sµ
i,t −

ρσ2
ϵ σ2

z,t−1

Ωt
(sx

i,t − ρxi
2,t−1)︸ ︷︷ ︸

surprise f rom cycle

,

(B1)

xi
1,t =

σ2
e (σ

2
z,t−1 + σ2

µ + σ2
ϵ )

Ωt︸ ︷︷ ︸
prior weight

ρxi
2,t−1 +

Vt + σ2
ϵ (σ

2
x + ρ2σ2

z,t−1)

Ωt︸ ︷︷ ︸
signal weight

sx
i,t −

ρσ2
e σ2

z,t−1

Ωt
(sµ

i,t − µi
2,t−1)︸ ︷︷ ︸

surprise f rom trend

.

(B2)
where Ωt and Vt are constants:

Ωt = (σ2
z,t−1 +σ2

µ +σ2
ϵ )(σ

2
x +σ2

e + ρ2σ2
z,t−1)− ρ2σ4

z,t−1, Vt = (σ2
z,t−1 +σ2

µ)(σ
2
x + ρ2σ2

z,t−1)− ρ2σ4
z,t−1.
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And the variance-covariance matrix of µi
1,t and xi

1,t is:

(Σ−1
s + Σ−1

θi
2,t−1

)−1 =

(
VarT

t C̃OVt

C̃OVt VarC
t

)
=




σ2
ϵ [Ωt−σ2

ϵ (σ
2
x+σ2

e +ρ2σ2
z,t−1)]

Ωt
− ρσ2

e σ2
ϵ σ2

z,t−1
Ωt

− ρσ2
e σ2

ϵ σ2
z,t−1

Ωt

σ2
e [Ωt−σ2

e (σ
2
ϵ+σ2

µ+σ2
z,t−1)]

Ωt


 ,

(B3)

The observation of yt provides new information and forecasters would update their
beliefs accordingly:

f i(µt|yt) ∝ exp



− 1

2(1 − r2
t )
[
(µt − µi

1,t)
2

VarT
t

−
2rt(µt − µi

1,t)(yt − µt − xi
1,t)√

VarT
t VarC

t

+
(yt − µt − xi

1,t)
2

VarC
t

]





∝ exp{− 1
2(1 − r2

t )
[
(VarT

t + 2rt

√
VarT

t VarC
t + VarC

t )µ
2
t

VarT
t VarC

t

− 2µt
VarC

t µi
1,t + rt

√
VarT

t VarC
t (µ

i
1,t + yt − xi

1,t) + VarT
t (yt − xi

1,t)

VarT
t VarC

t
]}, (B4)

and

f i(xt|yt) ∝ exp



− 1

2(1 − r2
t )
[
(yt − xt − µi

1,t)
2

VarT
t

−
2rt(yt − xt − µi

1,t)(xt − xi
1,t)√

VarT
t VarC

t

+
(xt − xi

1,t)
2

VarC
t

]





∝ exp{− 1
2(1 − r2

t )
(

VarT
t + 2rt

√
VarT

t VarC
t + VarT

t )x2
t

VarT
t VarC

t
)

− 2xt
VarC

t (yt − µi
1,t) + rt

√
VarT

t VarC
t (yt − µi

1,t + xi
1,t) + VarT

t xi
1,t

VarT
t VarC

t
}, (B5)

where rt is given by:

rt =
C̃OVt√

VarT
t VarC

t

. (B6)

According to Equations (B4) and (B5), the posterior beliefs f i(µt|yt) and f i(xt|yt)

are normal distributions. Therefore, µi
2,t and xi

2,t are normally distributed. As a result,
zi,t will also be normally distributed. That shows first part of the lemma.
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Furthermore, the means of the posterior beliefs are given by:

µi
2,t =

VarC
t µi

1,t + VarT
t (yt − xi

1,t) + rt

√
VarT

t VarC
t (µ

i
1,t + yt − xi

1,t)

VarT
t + 2rt

√
VarT

t VarC
t + VarC

t

=
(VarC

t + C̃OVt)µi
1,t + (VarT

t + C̃OVt)(yt − xi
1,t)

VarT
t + VarC

t + 2C̃OVt
. (B7)

and

xi
2,t =

VarC
t (yt − µi

1,t) + rt

√
VarT

t VarC
t (yt − µi

1,t + xi
1,t) + VarT

t xi
1,t

VarT
t + 2rt

√
VarT

t VarC
t + VarC

t

=
(VarC

t + C̃OVt)(yt − µi
1,t) + (VarT

t + C̃OVt)xi
1,t

VarT
t + VarC

t + 2C̃OVt
.

We show that

µi
2,t + xi

2,t =
(VarC

t + C̃OVt)µi
1,t + (VarT

t + C̃OVt)(yt − xi
1,t)

VarT
t + VarC

t + 2C̃OVt

+
(VarC

t + C̃OVt)(yt − µi
1,t) + (VarT

t + C̃OVt)xi
1,t

VarT
t + VarC

t + 2C̃OVt

= yt.

The second part of the lemma is shown.

Proof of Lemma 2. We first establish the existence of the steady state and then show
that the steady state is unique. According to Equations (B4) and (B5), after observing
yt, the variance of the separation error is given by:

σ2
zt
=

(1 − r2
t )VarT

t VarC
t

VarT
t + 2rt

√
VarT

t VarC
t + VarC

t

. (B8)

Recall the definitions of VarT
t , VarC

t and rt in Equations (B3) and (B6), we notice that
the right-hand-side of Equation (B8) is a function of σ2

z,t−1. Therefore, the steady state
value σ2

z is a fixed point of the condition characterized by Equation (B8). Solving for
the fixed point of Equation (B8) gives:

σ2
z =

−σ2
µ[Λ + 2ρ(1 − ρ)σ2

e σ2
ϵ ] +

√
σ2

µΛ[σ2
µ(Λ + 4ρσ2

e σ2
ϵ ) + 4σ2

e σ2
ϵ σ2

x ]

2[Λ + ρ2σ2
µ(σ

2
e + σ2

ϵ )]
, (B9)
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where Λ = (1 − ρ)2σ2
e σ2

ϵ + σ2
x(σ

2
e + σ2

ϵ ).
In the next step, we demonstrate that regardless of the initial variance of the sepa-

ration error, denoted as σ2
z0

, it always converges to a unique steady state value σ2
z . We

first simplify Equation (B8) to:

σ2
z,t =

g1(σ
2
z,t−1)

g2(σ2
z,t−1)

, (B10)

where
g1(σ

2
z,t−1) = w1σ2

z,t−1 + η1 and g2(σ
2
z,t−1) = w2σ2

z,t−1 + η2,

w1 = σ2
e σ2

ϵ (ρ
2σ2

µ + σ2
x); η1 = σ2

e σ2
ϵ σ2

µσ2
x ;

w2 = ρ2(σ2
e σ2

ϵ +σ2
e σ2

µ +σ2
µσ2

ϵ )+σ2
e σ2

ϵ +σ2
e σ2

x +σ2
ϵ σ2

x − 2ρσ2
e σ2

ϵ ; η2 = σ2
e σ2

ϵ (σ
2
µ +σ2

x)+σ2
µσ2

x(σ
2
e +σ2

ϵ ).

Define the difference between σ2
z,t and σ2

z,t−1 as:

D(σ2
z,t−1) = σ2

z,t − σ2
z,t−1 =

g1(σ
2
z,t−1)

g2(σ2
z,t−1)

− σ2
z,t−1.

To show the steady state is unique, it is sufficient to show that D(σ2
z,t−1) is monotoni-

cally decreasing. We first show that evaluated at σ2
z,t−1 = 0, the derivative is negative.

∂D(σ2
z,t−1)

∂σ2
z,t−1

|σ2
z,t−1=0 =

[
σ2

e σ2
ϵ (ρσ2

µ + σ2
x)

σ2
e σ2

ϵ (ρσ2
µ + σ2

x) + σ2
µσ2

x(σ
2
e + σ2

ϵ )

]2

− 1 < 0.

Then we show that the first-order derivative of D(σ2
z,t−1) is negative. The derivative is

given by:

∂D(σ2
z,t−1)

∂σ2
z,t−1

=
w1η2 − w2η1

(w2σ2
z,t + η2)2

− 1 =

[
σ2

e σ2
ϵ (ρσ2

µ + σ2
x)

(w2σ2
z,t + η2)

]2

− 1. (B11)

It is always decreasing, because we show that the second-order derivative is negative:

∂2D(σ2
z,t−1)

∂(σ2
z,t−1)

2
= −2w2

[σ2
e σ2

ϵ (ρσ2
µ + σ2

x)]
2

(w2σ2
z,t + η2)3

< 0.

Since D(σ2
z,t) is monotonously decreasing and concave and the steady state exists, it

is unique. Figure 1(a) illustrates the relationship between σ2
z,t−1 and σ2

z,t, while Figure
1(b) further illustrates how the difference between the two variances (i.e., σ2

z,t − σ2
z,t−1)

responds to σ2
z,t−1, highlighting the convergence property.
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0

45◦)

steady state σ2
z

σ2
z,t−1

σ
2 z
,t

(a) σ2
z,t−1 and σ2

z,t

0

0

σ2
z,t−1

D
(σ

2 z
,t
−
1
)

(b) D(σ2
z,t−1) and σ2

z,t−1

Figure B.1. The relationship between σ2
z,t−1 and σ2

z,t.

Proof of Lemma 3. Given the quadratic utility function, the forecaster’s optimal fore-
casts are given by the following:

Fi,tyt+h = Ei,t[yt+h]

= Ei,t[µt + ρhxt]

= µi
1,t + ρhxi

1,t.

The first equality is derived from the first order condition of the standard quadratic
utility function. With a quadratic utility function, forecasters would minimize the
expected squared error, and the first-order condition is given by:

Ei,t[Fi,tyt+h − yt+h] = 0.

The second equality follows given the data generation process is known to forecasters.
The third equality states that the expected value of the sum of µt and ρhxt is the sum
of the expected values of the two components, a well known property using Fourier
transform (Folland 2009).
Proof of Lemma 4. From Equation (B7) in the proof of Lemma 2, we obtain:

zi,t−1 = µi
2,t−1 − µt−1

=
(VarT + C̃OV)(xt−1 − xi

1,t−1)− (VarC + C̃OV)(µt−1 − µi
1,t−1)

VarT + C̃OV + VarC + C̃OV
,

which is the first part of Lemma 4.
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For the second part of Lemma 4, we show the steady state value of σ2
z increases in

σ2
µ. Our idea is to show that the solid line in Figure 1(a) shifts upwards when σ2

µ is
larger. Towards this end, we prove the following claim.

Claim 1. For any given σ2
z,t−1, the induced σ2

z,t is increasing in σ2
µ.

Using Equation (B10), we obtain the derivative:

∂σ2
z,t

∂σ2
µ

=
∂[g1(σ

2
z,t−1)/g2(σ

2
z,t−1)]

∂σ2
µ

=
σ4

e σ4
ϵ [σ

2
x − ρ(1 − ρ)σ2

z,t−1]
2

g2(σ2
z,t−1)

2
> 0. (B12)

The claim is shown. Consequently, given the properties of D(σ2
z,t−1) shown earlier, a

larger steady state value for σ2
z is implied. The comparative statics with respect to σ2

x ,
σ2

ϵ , and σ2
e are analogous.

It is worth noting that zi,t is obtained via Bayesian updating, using the prior belief
µi

1,t and yt − xi
1,t shown in Equation (B9). As the variance of the posterior belief is

always smaller than the variance of both prior beliefs, we can obtain:

0 ≤ σ2
z ≤ min{VarC, VarT}.

In a special case when the variance of private signals go to infinity (i.e., σ2
e → +∞,

σ2
ϵ → +∞), the steady state σ2

z is:

σ2
z =

−(1 − ρ2)σ2
µ +

√
σ2

µ(1 − ρ)2[(1 + ρ)2σ2
µ + 4σ2

x ]

2(1 − ρ)2

Similarly, considering the case that when the persistence of the cyclical component
ρ changes:

∂σ2
z,t

∂ρ
=

σ2
z,t−1

g2(σ2
z,t−1)

2

{
2σ4

e σ4
ϵ [ρσ2

µ + σ2
x ][σ

2
µ + (1 − ρ)σ2

z,t−1]
}
> 0.

Therefore, the steady state value of σ2
z is increasing in ρ. The logic underlying this

statement is analogous.

Proof of Proposition 1. To show the first item, we note the following. When σ2
µ = 0,

according to Lemma 4, σ2
z goes to zero, and therefore C̃OV becomes zero. When

σ2
µ → +∞, Lemma 4 states that σ2

z → min{VarC, VarT}, but Ω → +∞ in this case.

Therefore, C̃OV goes to zero.
To show the second term, we first show that the second order derivative of σ2

z

with respect to σ2
µ is negative. In Equation (B12), g2(σ

2
z,t−1)

2 increases in σ2
µ. Then the

derivative ∂σ2
z /∂σ2

µ decreases when σ2
µ is larger. As σ2

µ approaches infinity, ∂σ2
z /∂σ2

µ

12



approaches zero. That is,

Z′
µ ≡ ∂σ2

z
∂σ2

µ
> 0 and Z′′

µ ≡ ∂2σ2
z

(∂σ2
µ)

2 < 0.

We then derive the derivative with respect to σ2
µ:

∂|C̃OV|
∂σ2

µ
∝ Z′

µ(σ
2
e + σ2

x)(σ
2
ϵ + σ2

µ)− σ2
z (ρ

2σ2
z + σ2

e + σ2
x).

We show that evaluated at σ2
µ = 0,

∂|C̃OV|
∂σ2

µ
|σ2

µ=0 ∝ Z′
µ(σ

2
e + σ2

x)σ
2
ϵ > 0.

That is because σ2
z = 0 when σ2

µ = 0. The second-order derivative is given by:

∂2|C̃OV|
(∂σ2

µ)
2 ∝ Z′′

µ(σ
2
µ + σ2

ϵ )(σ
2
e + σ2

x)− 2ρ2σ2
z Z′

µ < 0.

To see the inequality we note that Z′
µ > 0, and Z′′

µ < 0. Therefore, there exists a

unique σ̃2
µ > 0, such that ∂|C̃OV|/∂σ2

µ = 0. For any σ2
µ < σ̃2

µ, |C̃OV| is increasing in

σ2
µ; and for any σ2

µ > σ̃2
µ, |C̃OV| is decreasing in σ2

µ. The property that |C̃OV| increases
and then decrease is implied.

It is straightforward to show the second item that |C̃OV| is always increasing in ρ,
because

∂|C̃OV|
∂ρ

=
σ2

e σ2
ϵ

Ω2

{
(σ2

x + σ2
e )[σ

4
z + ρZ′

ρ(σ
2
µ + σ2

ϵ )] + σ2
z (σ

2
µ + σ2

ϵ )[σ
2
x + σ2

e − ρ2σ2
z ]
}
> 0,

where Z′
ρ ≡ ∂σ2

z /∂ρ > 0.

Proof of Proposition 2. The covariance between the changes in the long term fore-
casts and the cyclical forecasts is given by:

COVh
F = cov(Fi,tyt+3Y − Fi,t−1yt−1+3Y, Cych

i,t − Cych
i,t−1) (B13)

= (ρh − ρ3Y)
[
cov(µi

1,t − µi
1,t−1, xi

1,t − xi
1,t−1) + ρ3Yvar(xi

1,t − xi
1,t−1)

]

= (ρh − ρ3Y)(C̃OV + ρ3YVarC)

=
(ρh − ρ3Y)σ2

e
Ω

{
ρ3Y[Ω − σ2

e (σ
2
ϵ + σ2

µ + σ2
z )]− ρσ2

ϵ σ2
z

}

∝ ρ3Y[Ω − σ2
e (σ

2
ϵ + σ2

µ + σ2
z )]− ρσ2

ϵ σ2
z .
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Define K ≡ ρ3Y[Ω − σ2
e (σ

2
ϵ + σ2

µ + σ2
z )] − ρσ2

ϵ σ2
z . Then the sign of the covariance be-

tween changes in trend forecasts and changes in cyclical forecasts depends on the sign
of K.

To prove the properties in the proposition, we first show that for any given σ2
µ, there

is a threshold σ2
x such that if and only if σ2

x < σ2
x, then K < 0; and otherwise, K ≥ 0. To

see this, we derive the first-order derivative of K with respect to σ2
x :

∂K
∂σ2

x
= ρ3Y[σ2

z + σ2
µ + σ2

ϵ + σ2
x Z′

x + ρ2Z′
x(σ

2
µ + σ2

ϵ )]− ρσ2
ϵ Z′

x (B14)

= Z′
x

[
ρ3Y(

σ2
z + σ2

µ + σ2
ϵ

Z′
x

+ σ2
x + ρ2σ2

µ + ρ2σ2
ϵ )− ρσ2

ϵ

]
.

According to Lemma 4, Z′
x > 0 and Z′′

x < 0. Therefore, the sum of first two terms in
Equation (B14), (σ2

z + σ2
µ + σ2

ϵ )/Z′
x + σ2

x , increases in σ2
x .

If ∂K/∂σ2
x ≥ 0 when evaluated at σ2

x = 0, then it always holds ∂K/∂σ2
x ≥ 0. If

∂K/∂σ2
x < 0 when evaluated at σ2

x = 0, ∂K/∂σ2
x crosses zero only once from below.

Note that ∂K/∂σ2
x must be positive when σ2

x is sufficiently large.
Furthermore, we characterize how K changes in σ2

x . When σ2
x = 0, K = 0. That

is because σ2
z = 0. When σ2

x > 0, K is either always positive, or K initially decreases
and then crosses zero from below. This property implies that for any given value of
σ2

µ, there exists a threshold σ2
x ≥ 0, such that K|σ2

x=σ2
x
= 0, and for any σ2

x < σ2
x, K < 0.

Given this property, we start proving the first item in this proposition. Towards
this end, we show the following claim.
Claim: When σ2

x = 0, there exists a threshold σ2
µ for σ2

µ, such that when σ2
µ ≥ σ2

µ, σ2
x = 0;

when 0 < σ2
µ < σ2

µ, σ2
x > 0; and when σ2

µ = 0, σ2
x = 0.

To prove this claim, we first evaluate ∂K/∂σ2
x at σ2

x = 0:

∂K
∂σ2

x
|σ2

x=0 = Z′
x=0

[
ρ3Y(

σ2
µ + σ2

ϵ

Z′
x=0

+ ρ2σ2
µ + ρ2σ2

ϵ )− ρσ2
ϵ

]
,

where Z′
x=0 is derivative of σ2

z evaluated at σ2
x = 0. It is given by:

Z′
x=0 ≡ ∂σ2

z
∂σ2

x
|σ2

x=0 =





2ρ(σ2
e +σ2

ϵ )
(1−ρ)(1+ρ)

σ2
µ +

2σ2
e σ2

ϵ
1+ρ , if σ2

µ > 0.

0, if σ2
µ = 0.

(B15)

There are only two cases. (i) When ∂K/∂σ2
x |σ2

x=0 ≥ 0, then K is always positive
when σ2

x > 0 and σ2
x = 0; and (ii) when ∂K/∂σ2

x |σ2
x=0 < 0, K is negative and then

crosses zero from below at σ2
x = σ2

x > 0. Therefore, the necessary and sufficient condi-
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tion for σ2
x > 0 is given by ∂K/∂σ2

x |σ2
x=0 < 0, which is equivalent to

ρ3Y(
σ2

µ + σ2
ϵ

Z′
x=0

+ ρ2σ2
µ + ρ2σ2

ϵ )− ρσ2
ϵ < 0

or using the expression of Z′
x=0 in Equation (B15),

2ρ4(σ2
e + σ2

ϵ )

1 − ρ2 (σ2
µ)

2 +

[
1 +

2ρ2σ2
e σ2

ϵ

1 + ρ
(1 + ρ2 − ρ1−3Y)

]
σ2

µ −
[

ρ(ρ−h − 1)
2σ2

e σ2
ϵ

1 + ρ
+ ρ1−3Y

]
σ2

ϵ < 0.

(B16)

The left-hand-side of Equation (B16) is quadratic in σ2
µ, therefore there are two roots.

Note that The left-hand-side of Equation (B16) is decreasing and then increasing in
σ2

µ and it is negative when σ2
µ = 0. Therefore, there must exist a unique positive root

σ2
µ > 0.

Therefore, when σ2
µ ≥ σ2

µ, σ2
x = 0, which implies K > 0 on condition that σ2

x > 0.
The first item in this proposition is shown. When 0 < σ2

µ < σ2
µ, σ2

x > 0, which implies
K > 0 on condition that σ2

x > σ2
x. The second item is shown.

In addition, from the third equivalent of Equation (B13), as the forecast horizon h
used to construct the cyclical forecast increases, the magnitude of COVh

F is decreasing.
The third item is shown.

Proof of Proposition 3. Given the optimal forecasts characterized by Lemma 3, the
forecast variance across all forecasters is given by:

Var(Fi,tyt+h) = E[(µi
1,t − E[µt])

2] + ρ2hE[(xi
1,t − E[xt])

2] + 2ρhE[(µi
1,t − E[µt])]E[(xi

1,t − E[xt])].

E[·] stands for the mean forecast across all forecasters. To be specific:

E[(µi
1,t − E[µt])

2] = VarT − σ4
ϵ (ρ

2σ2
z + σ2

x + σ2
e )

2

Ω2 − ρ2σ4
ϵ σ4

z
Ω2 − σ4

ϵ (σ
2
e + σ2

x)
2

Ω2 = VarTϕT,

where ϕT is given by:

ϕT = 1 − σ4
ϵ

VarT ×
σ2

µ(ρ
2σ2

z + σ2
x + σ2

e )
2 + ρ2σ2

x σ4
z + (σ2

e + σ2
x)

2Wσ2
z

Ω2

=
[V + σ2

e (σ
2
µ + σ2

z )]
2 + ρ2σ2

e σ2
ϵ σ4

z + σ2
ϵ (σ

2
e + σ2

x)
2Wσ2

z

Ω[Ω − σ2
ϵ (σ

2
x + σ2

e + ρ2σ2
z )]

< 1.

Note that W = E[(zi,t−1 − E[zi,t−1])
2]/σ2

z is a positive scalar in steady state and invari-
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ant in t. To obtain the numerator term E[(zi,t − E[zi,t])
2], we rewrite Equation (10) and

express zi,t as the follows:

zi,t =
σ2

e σ2
ϵ

Ω(VarT + 2C̃OV + VarC)
{−[σ2

x + ρ(ρ − 1)σ2
z ]γ

µ
t + [σ2

µ + (1 − ρ)σ2
z ]γ

x
t (B17)

+ σ2
e Vϵi,t − σ2

ϵ Vei,t + (ρσ2
µ + σ2

x)zi,t−1}.

This allows us to obtain:

zi,t −E[zi,t] =
σ2

e σ2
ϵ

Ω(VarT + 2C̃OV + VarC)

[
σ2

e Vϵi,t − σ2
ϵ Vei,t + (ρσ2

µ + σ2
x)(zi,t−1 − E[zi,t−1])

]
.

and

E[(zi,t − E[zi,t])
2] =

(σ2
e + σ2

ϵ )σ
2
z V2

(σ2
e + σ2

ϵ )V2 + σ2
e σ2

ϵ{σ2
µ[σ

2
x + ρσ2

z (ρ − 1)]2 + σ2
x [σ

2
µ + (1 − ρ)σ2

z ]
2} .

Therefore, W is given by:

W =
(σ2

e + σ2
ϵ )V2

(σ2
e + σ2

ϵ )V2 + σ2
e σ2

ϵ{σ2
µ[σ

2
x + ρσ2

z (ρ − 1)]2 + σ2
x [σ

2
µ + (1 − ρ)σ2

z ]
2} < 1.

Similarly, E[(xi
1,t − E[xt])2] and E[(µi

1,t − E[µt])]E[(xi
1,t − E[xt])] can be written as:

E[(xi
1,t − E[xt])

2] =
[V + σ2

ϵ (σ
2
x + ρ2σ2

z )]
2 + ρ2σ2

e σ2
ϵ σ4

z + ρ2σ2
e (σ

2
ϵ + σ2

µ)
2Wσ2

z

Ω[Ω − σ2
e (σ

2
ϵ + σ2

µ + σ2
z )]

VarC = ϕCVarC,

and

E[(µi
1,t − E[µt])]E[(xi

1,t − E[xt])]

=
σ2

ϵ [V + σ2
ϵ (σ

2
x + ρ2σ2

z )] + σ2
e [V + σ2

e (σ
2
z + σ2

µ)] + σ2
e σ2

ϵ (σ
2
x + σ2

e )(σ
2
ϵ + σ2

µ)Wσ2
z

Ωσ2
e σ2

ϵ
C̃OV

= ϕCOVC̃OV.

Therefore, the forecast variance of Fi,tyt+h across all forecasters can be written as:

Var(Fi,tyt+h) = E[(Fi,tyt+h − E[Fi,tyt+h])
2] = ρ2hVarCϕC + VarTϕT + 2ρhC̃OVϕCOV ,

Take the derivative with respect to the forecast horizon h:

∂Var(Fi,tyt+h)

∂h
= 2ρh ln ρ(ρhVarCϕC + C̃OVϕCOV).
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The forecast variance is increasing in h if and only if ∂Var(Fi,tyt+h)/∂h > 0. That is,

h > h =
1

ln ρ
ln

−C̃OVϕCOV

VarCϕC
.

Proof of Proposition 4. Given the beliefs regarding the trend and cyclical components
specified in Equations (B1) and (B2), the now-cast error in period t is given by:

FEi,t = yt − Fi,tyt

=
ρσ2

e σ2
z + σ2

ϵ (σ
2
x + σ2

e + ρ2σ2
z )

Ω
γ

µ
t +

ρσ2
ϵ σ2

z + σ2
e (σ

2
µ + σ2

ϵ + σ2
z )

Ω
γx

t

−
V + σ2

e [(1 − ρ)σ2
z + σ2

µ]

Ω
ϵi,t −

V + σ2
ϵ [σ

2
x + (ρ2 − ρ)σ2

z ]

Ω
ei,t

+
ρσ2

e (σ
2
ϵ + σ2

µ)− σ2
ϵ (σ

2
e + σ2

x)

Ω
zi,t−1.

Since the state innovations and the signal noises (γµ
t , γx

t , ϵi,t, ei,t) are independent
across periods, the correlation between the now-cast errors across periods is:

cov(FEi,t−1, FEi,t) =
ρσ2

e (σ
2
ϵ + σ2

µ)− σ2
ϵ (σ

2
e + σ2

x)

Ω
cov(FEi,t−1, zi,t−1).

We first examine the correlation between the now-cast error at period t− 1 (i.e., FEi,t−1)
and the separation error at the end of t − 1 (i.e., zi,t−1).

To begin with, we first demonstrate that in the rational case where m1 = m2 = 1,
the covariance between the now-cast error in period t − 1 and the separation error
zi,t−1 is zero. The now-cast error in period t − 1 is given by:

FEi,t−1 = yt−1 − Fi,t−1yt−1

= (µt−1 − µi
1,t−1) + (xt−1 − xi

1,t−1).

The separation error zi,t−1 is given by:

zi,t−1 =
(VarT + C̃OV)(xt−1 − xi

1,t−1)− (VarC + C̃OV)(µt−1 − µi
1,t−1)

VarT + VarC + 2C̃OV
.

Therefore, the covariance is:

cov(FEi,t−1, zi,t−1) =
[(VarT + C̃OV)(C̃OV + VarC)− (VarC + C̃OV)(VarT + C̃OV)]

VarT + VarC + 2C̃OV
= 0.
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Therefore, when m1 = m2 = 1, the now-cast error in the period t − 1 is independent
with the separation error zi,t−1. Consequently, the now-cast errors across periods t − 1
and t would also be zero.

When forecasters are overconfident in the trend signal, i.e., m1 < 1, m2 = 1. The
posterior beliefs regarding the two components after observing the new signals can be
written as:

µT
1,t,o =

m1σ2
ϵ (ρ

2σ2
z,o + σ2

x + σ2
e )

Ω1
µi

2,t−1,o +
V1 + σ2

e (σ
2
z,o + σ2

µ)

Ω1
sµ

i,t −
ρm1σ2

ϵ σ2
z,o

Ω1
(sx

i,t − ρxi
2,t−1,o),

(B18)

xT
1,t,o =

σ2
e (σ

2
z,o + σ2

µ + m1σ2
ϵ )

Ω1
ρxi

2,t−1,o +
V1 + m1σ2

ϵ (σ
2
x + ρ2σ2

z,o)

Ω1
sx

i,t −
ρσ2

e σ2
z,o

Ω1
(sµ

i,t −µi
2,t−1,o),

(B19)
where Ω1 and V1 are constants:

Ω1 = (σ2
z,o +σ2

µ +m1σ2
ϵ )(σ

2
x +σ2

e + ρ2σ2
z,o)− ρ2σ4

z,o, V1 = (σ2
z,o +σ2

µ)(σ
2
x + ρ2σ2

z,o)− ρ2σ4
z,o.

The term σ2
z,o is the perceived variance of the separation error in the steady state in this

case. The variance-covariance matrix regarding the beliefs of the trend and cyclical
components is:

(
VarT

1 C̃OV1

C̃OV1 VarC
1

)
=




m1σ2
ϵ [Ω1−m1σ2

ϵ (σ
2
x+σ2

e +ρ2σ2
z,o)]

Ω1
− ρσ2

e m1σ2
ϵ σ2

z,o
Ω1

− ρσ2
e m1σ2

ϵ σ2
z,o

Ω1

σ2
e [Ω1−σ2

e (m1σ2
ϵ+σ2

µ+σ2
z,o)]

Ω1


 . (B20)

Importantly, the perceived variances of both the trend and cyclical components, as
well as their covariance (in magnitude), are lower:

VarT
a = VarT

1 + (1 − m1)σ
2
ϵ (

V1 + σ2
e (σ

2
z,o + σ2

µ)

Ω1
)2 + (

m1σ2
ϵ (σ

2
x + σ2

e )

Ω1
)2(σ2

z,a − σ2
z,o),

(B21)

VarC
a = VarC

1 + (1 − m1)σ
2
ϵ (

ρσ2
e σ2

z,o

Ω1
)2 + (

ρσ2
e (σ

2
µ + m1σ2

ϵ )

Ω1
)2(σ2

z,a − σ2
z,o), (B22)

C̃OVa = C̃OV1 − (1 − m1)σ
2
ϵ

ρσ2
e σ2

z,o

Ωo

V1 + σ2
e (σ

2
z,o + σ2

µ)

Ω1
(B23)

− m1σ2
ϵ (σ

2
x + σ2

e )

Ω1

ρσ2
e (σ

2
µ + m1σ2

ϵ )

Ω1
(σ2

z,a − σ2
z,o).

The subscript a stands for the actual variance and covariance term when forecasters
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are overconfident in the trend signal. σ2
z,a is the actual variance of the separation error:

σ2
z,a − σ2

z,o = GT(1 − m1)σ
2
ϵ (

σ2
e V1

Ω1
)2 > 0,

where GT is given by:

GT =
Ω2

1

[Ω1(VarT
1 + VarC

1 + 2C̃OV1)]2 − [m1σ2
e σ2

ϵ (ρσ2
µ + σ2

x)]
2
> 0.

At the end of period t − 1, when the actual state value yt−1 is observed by all the fore-
casters, they will revise their beliefs using the perceived variance-covariance matrix.
The separation error zi,t−1 in this case can be written as:

zi,t−1,o =
(VarT

1 + C̃OV1)(xt−1 − xT
1,t−1,o)− (VarC

1 + C̃OV1)(µt−1 − µT
1,t−1,o)

VarT
1 + VarC

1 + 2C̃OV1
.

The covariance between FEi,t−1 and zi,t−1,o is given by:

cov(FEi,t−1, zi,t−1,o) (B24)

= (VarT
1 + C̃OV1)(VarC

a + C̃OVa)− (VarC
1 + C̃OV1)(VarT

a + C̃OVa)

= (VarT
1 + C̃OV1)(VarC

a − VarC
1 + C̃OVa − C̃OV1)

− (VarC
1 + C̃OV1)(VarT

a − VarT
1 + C̃OVa − C̃OV1).

The second equality in Equation (B24) holds because we subtract the following term
to the right-hand-side:

(VarT
1 + C̃OV1)(VarC

1 + C̃OV1)− (VarC
1 + C̃OV1)(VarT

1 + C̃OV1) = 0. (B25)

This term is zero because it is the perceived covariance FEi,t−1 and zi,t−1. Using Equa-
tions (B21) to (B24), we have:

cov(FEi,t−1, zi,t−1,o) = −(1 − m1)σ
2
ϵ ϕT

over
σ2

e V1

Ω1
, (B26)

where

ϕT
over =

1
Ω3

1
[(1 − ρ)σ2

e (σ
2
µ + σ2

z,o + m1σ2
ϵ ) + V1 + m1σ2

ϵ σ2
x ][m1σ4

e σ2
ϵ Vo(ρσ2

µ + σ2
x)]G

T

+
V1 + σ2

e [σ
2
µ + (1 − ρ)σ2

z,o]

Ω1
[1 − GT

Ω2
1

m1σ4
e σ2

ϵ V1(ρσ2
µ + σ2

x)] > 0.
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Therefore, when forecasters exhibit overconfidence in the trend signal, there is always
a negative correlation between the now-cast error FEi,t−1 and the separation error
zi,t−1,o. Consequently, the covariance between the now-cast errors across periods can
be expressed as:

cov(FEi,t−1, FEi,t) =
ρσ2

e (m1σ2
ϵ + σ2

µ)− m1σ2
ϵ (σ

2
e + σ2

x)

Ω1
cov(FEi,t−1, zi,t−1)︸ ︷︷ ︸

(−)

.

The condition for a positive correlation between the now-cast errors across periods
then in given by:

ρσ2
e (m1σ2

ϵ + σ2
µ)− m1σ2

ϵ (σ
2
e + σ2

x)

Ω1
< 0,

which is equivalent to
ρσ2

µσ2
e

σ2
ϵ [(1 − ρ)σ2

e + σ2
x ]

< m1 < 1.

Following the same logic, when forecasters are overconfident in the cyclical signal, the
variance-covariance matrix of regarding the beliefs of the trend and cyclical compo-
nents is:

(
VarT

2 C̃OV2

C̃OV2 VarC
2

)
=




σ2
ϵ [Ω2−σ2

ϵ (σ
2
x+m2σ2

e +ρ2σ2
z,o)]

Ω2
− ρm2σ2

e σ2
ϵ σ2

z,o
Ω2

− ρm2σ2
e σ2

ϵ σ2
z,o

Ω2

m2σ2
e [Ω2−m2σ2

e (σ
2
ϵ+σ2

µ+σ2
z,o)]

Ω2


 . (B27)

The covariance between the now-cast error at t − 1 and the separation error zi,t−1,o is
given by:

cov(FEi,t−1, zi,t−1,o) = (1 − m2)σ
2
e ϕC

over
σ2

ϵ V2

Ω2
, (B28)

where Ω2 and V2 are counterparts of Ω1 and V1:

Ω2 = (σ2
z,o +σ2

µ +σ2
ϵ )(σ

2
x +m2σ2

e + ρ2σ2
z,o)− ρ2σ4

z,o, V2 = (σ2
z,o +σ2

µ)(σ
2
x + ρ2σ2

z,o)− ρ2σ4
z,o.

and

ϕC
over =

σ2
ϵ [σ

2
x − ρ(1 − ρ)σ2

z,o] + V2

Ω2
[1 − ρGC m2σ4

ϵ σ2
e V2(σ

2
µ + σ2

x)

Ω2
2

]

+
1

Ω3
2
[V2 + m1σ2

e (σ
2
µ + (1 − ρ)σ2

z )][m2σ4
ϵ σ2

e V2(σ
2
µ + σ2

x)]G
C > 0.

GC is the counterpart of GT:

GC =
Ω2

2

[Ω2(VarT
2 + VarC

2 + 2C̃OV2)]2 − [m2σ2
e σ2

ϵ (ρσ2
µ + σ2

x)]
2
> 0.

20



Equation (B28) shows that when forecasters are overconfident in the cyclical signal, the
correlation between the now-cast error at t − 1 and the separation error zi,t−1,o would
be positive. The covariance between the now-cast errors across periods is given by:

cov(FEi,t−1, FEi,t) =
ρm2σ2

e (σ
2
ϵ + σ2

µ)− σ2
ϵ (m2σ2

e + σ2
x)

Ω2
cov(FEi,t−1, zi,t−1)︸ ︷︷ ︸

(+)

.

Thus, the now-cast errors are positively correlated across periods if and only if:

1 <
1

m2
<

1
m2

=
σ2

e [ρσ2
µ − (1 − ρ)σ2

ϵ ]

σ2
ϵ σ2

x
.

C Supplemental materials

C.1 Common Shock

In this section, we analyze the case of correlated trend and cyclical components driven
by a common shock, by following Delle Monache et al. (2024). They show the presence
of a common shock influencing both the trend and cyclical components of GDP growth
in the same direction.

This common shock assumption is widely used in the literature. It captures sit-
uations where economic shocks have both transitory and permanent effects. Many
studies show that recessions impact the economy in both temporary and lasting ways.
For example, Furlanetto et al. (2025) and Antolin-Diaz et al. (2017) show that sup-
ply shocks can negatively affect both the cyclical and permanent components of GDP.
Similarly, Almeida et al. (2004) finds that an increase in firms’ profitability can perma-
nently elevate their cash flows while also boosting short-term cash flows by reducing
potential losses.

In this section, we consider the following state generation process:

yt = µt + xt,

µt = µt−1 + γ
µ
t + δt and xt = ρxt−1 + γx

t + bδt,

where δt is a common shock affecting both the trend and cyclical components. This
shock is normally distributed with zero mean and variance σ2

δ , and is independent
across periods (i.e., δt ∼ N(0, σ2

δ )). The scalar b measures the relative importance of
the shock to each of these components. Notably, following Delle Monache et al. (2024),
we assume that b is positive, thereby capturing the common shock assumption.

To contrast with our benchmark model, we assume in this case that the trend com-
ponent becomes observable at the end of each period. With the information structure,
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the belief updating process is given by:

θi
1,t = θi

2,t−1 + κcor(si,t − θi
2,t−1), (C1)

where θi
2,t−1 = (µt−1, ρxt−1)

′. Since forecasters are able to observe the actual trend and
cyclical components at the end of each period, κcor is the corresponding Kalman gain
matrix given by:

κcor =




τ
µ
2

τ
µ
1 +τ

µ
2 +τ

µ
3

τ
µ
3

b(τµ
1 +τ

µ
2 +τ

µ
3 )

bτx
3

τx
1 +τx

2 +τx
3

τx
2

τx
1 +τx

2 +τx
3


 , (C2)

where τ
µ
1 , τ

µ
2 , τ

µ
3 , τx

1 , τx
2 , τx

3 are the precisions of information:

τ
µ
1 =

1
σ2

µ + σ2
δ

; τ
µ
2 =

1
σ2

ϵ
; τ

µ
3 =

b2

b2σ2
µ + σ2

x + σ2
e

;

τx
1 =

1
σ2

x + b2σ2
δ

; τx
2 =

1
σ2

e
; τx

3 =
1

b2σ2
µ + b2σ2

ϵ + σ2
x

.

As shown in Equation (C2), the elements on the sub-diagonal is non-zero if b ̸= 0.
Given b > 0, the sub-diagonal elements are positive. This is because the surprise from
the trend signal (i.e., sµ

i,t − µt−1) contains information about the common shock, which
also affects the cyclical components. Therefore, forecasters would use the trend signal
to update their belief about the cyclical belief, and vice versa.

We show that in this case, the covariance between forecasters’ trend beliefs and
cyclical beliefs (i.e., C̃OVcor) is always positive:

C̃OVcor ∝ b(σ2
δ +σ2

µ)[b
2(σ2

ϵ +σ2
µ)+σ2

e +σ2
x ][σ

2
δ (b

2σ2
ϵ + b2σ2

µ +σ2
e +σ2

x)+σ2
e (σ

2
ϵ +σ2

µ)+σ2
ϵ σ2

x ].
(C3)

With a positive covariance, predictions of this particular case would be similar to
the special case discussed in Section 4.1, and therefore inconsistent with the observed
empirical pattern.

C.2 Overconfident in cyclical signal

When forecasters are overconfident in the cyclical signal, they perceive the precision
of the cyclical signal to be higher than it actually is. Consequently, the error term in the
cyclical belief is assigned an excessive weight compared to the Bayesian scenario. As
a result, it drives the correlation between the separating error (zi,t−1) and the now-cast
error for the previous period (FEi,t−1) to become positive. Specifically, we show that
the covariance is given by:

cov(zi,t−1, FEi,t−1) = (1 − m2)σeϕ
C
O

σ2
ϵ V2

Ω2
> 0,
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where ϕC
O is a positive scalar shown in the proof of Proposition 4.

Similar to the case in the main text, when forecasters are overconfident in the cycli-
cal signal, the covariance between the separation error and the now-cast error of the
current period can also be decomposed into two parts:

cov(zi,t−1, FEi,t) =
σ2

z
Ω2

[−σ2
ϵ (σ

2
x + m2σ2

e )︸ ︷︷ ︸
trend prior e f f ect

+ ρm2σ2
e (σ

2
µ + σ2

ϵ )︸ ︷︷ ︸
cyclical prior e f f ect

]. (C4)

When forecasters are overconfident in the cyclical signal, they tend to place greater
reliance on the cyclical signal and less on the prior belief inherited from the last pe-
riod. Therefore, as the extent of overconfidence in the cyclical signal increases (i.e.,
m2 becomes smaller), the effect of the cyclical prior is more likely to be dominated,
and the covariance between the separation error (zi,t−1) and the current now-cast er-
ror (FEi,t) is more likely to be negative. Consider a polar case where m2 goes to zero,
the covariance is strictly negative.

Part (ii) of Proposition 4 states that when both the confusion and overconfidence
mechanisms are present, the now-cast errors across periods can be positively corre-
lated if the extent of overconfidence in the cyclical signal is moderate. The inequality
in Equation (20) characterizes the condition under which the effect of the cyclical prior
dominates the effect of the trend prior. Consider the case when the trend component is
very volatile (i.e., σ2

µ is large enough). Forecasters would place limited reliance on the
trend prior and rely heavily on the signal regarding the trend component. Therefore,
the effect of the trend prior is always dominated, resulting in a positive correlation be-
tween the separation error and the now-cast error of the current period. Consequently,
the covariance between the now-cast errors across periods is positive for any m2 < 1.

C.3 Forecast of other forecasters

This section characterizes the case where forecasters not only observe the actual state
value but also observe the forecasts from other forecasters. In our model, the individ-
ual forecast error comprises both the individual-specific forecast error and the com-
mon forecast error, while the consensus forecast includes only the common forecast
error. Therefore, forecaster i would anchor to the consensus forecasts after observing
the entire distribution.

That is, at the end of the period t− 1, the individual separation error zi,t−1 would be
the same across different forecasters (i.e., zt−1 = zi,t−1 = zj,t−1 for any i, j). Specifically,
at the end of period t, forecasters observe the actual state value of the current period,
yt−1, and the forecasts, Fi,t−1yt−1+h, from other forecasters. The separation error, zt−1,
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is given by:

zt−1 =
(VarT

+ COV)(xt−1 − x1,t−1)− (VarC
+ COV)(µt−1 − µ1,t−1)

(VarT
+ COV) + (VarC

+ COV)
̸= 0,

where µt−1 − µ1,t−1 and xt−1 − x1,t−1 are the consensus forecast errors regarding the
trend component and cyclical component:

µt−1 − µ1,t−1 =
σ2

ϵ (ρ
2σ̄2

z + σ2
x + σ2

e )

Ω̄
γ

µ
t−1 +

ρσ2
ϵ σ̄2

z
Ω̄

γx
t−1 −

σ2
ϵ (σ

2
x + σ2

e )

Ω̄
zt−2,

xt−1 − x1,t−1 =
ρσ2

e σ̄2
z

Ω̄
γ

µ
t−1 +

σ2
e (σ̄

2
z + σ2

µ + σ2
ϵ )

Ω̄
γx

t−1 +
ρσ2

e (σ
2
µ + σ2

ϵ )

Ω̄
zt−2.

At the beginning of the current period t, after observing their private signals, indi-
vidual forecasters’ beliefs regarding the trend and cyclical components are still hetero-
geneous. Their beliefs are given by:

µi
1,t =

σ2
ϵ (ρ

2σ̄2
z + σ2

x + σ2
e )

Ω̄
µ2,t−1 +

V̄ + σ2
e (σ̄

2
z + σ2

µ)

Ω̄
sµ

i,t −
ρσ2

ϵ σ̄2
z

Ω̄
(sx

i,t − ρx2,t−1),

xi
1,t =

σ2
e (σ̄

2
z + σ2

µ + σ2
ϵ )

Ω̄
ρx2,t−1 +

V̄ + σ2
ϵ (σ

2
x + ρ2σ̄2

z )

Ω̄
sx

i,t −
ρσ2

e σ̄2
z

Ω̄
(sµ

i,t − µ2,t−1),

where σ̄2
z is the variance of the common separation error. Note that µ2,t−1 = µt−1 +

zt−1 and ρx2,t−1 = ρxt−1 − ρzt−1 are the common prior beliefs. Furthermore, Ω̄ and V̄
are constants:

Ω̄ = (σ̄2
z + σ2

µ + σ2
ϵ )(σ

2
x + σ2

e + ρ2σ̄2
z )− ρ2σ̄4

z , V̄ = (σ̄2
z + σ2

µ)(σ
2
x + ρ2σ̄2

z )− ρ2σ̄4
z .

In summary, if forecasters can observe all the forecasts provided by other forecast-
ers, the separation error across all forecasters would be common, which would be a
weighted average of all historical state innovations. However, it is still non-zero, indi-
cating that forecasters still cannot perfectly separate the two components. Therefore,
our results obtained under the benchmark model still hold.

C.4 Noisy state Signal

In each period, forecaster i observe a private of the actual state yt:

si,t = yt + ϵi,t, with ϵi,t ∼ N(0, σ2
ϵ ).
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Without loss of generality, forecaster i’s trend and cyclical beliefs can be written as:

Fi,tµt =
t

∑
k=0

α1,kγ
µ
k +

t

∑
k=0

α2,kγx
k +

t

∑
k=0

α3,kϵi,k;

Fi,txt =
t

∑
k=0

β1,kγ
µ
k +

t

∑
k=0

β2,kγx
k +

t

∑
k=0

β3,kϵi,k,

where α1,k, α2,k, α3,k, β1,k, β2,k, and β3,k are the weights assigned to the trend, cycle in-
novation, and signal noise for period k.

The average beliefs regarding the trend and cyclical components are:

Ftµt =
t

∑
k=0

α1,kγ
µ
k +

t

∑
k=0

α2,kγx
k ; Ftxt =

t

∑
k=0

β1,kγ
µ
k +

t

∑
k=0

β2,kγx
k .

The forecast dispersion is:

E[(Fi,tyt+h − Ftyt+h)
2] =

t

∑
k=0

(α3,k + ρhβ3,k)
2σ2

ϵ . (C5)

Therefore, the forecast dispersion increases with the forecast horizon h if and only if
α3,k and β3,k have opposite signs.

In the following, we consider a special case where the forecasters know the exact
historical values of the trend and cyclical components, in other words:

Fi,t−1µt = µt−1; Fi,t−1xt = ρxt−1.

Upon observing the signal si,t, the forecaster’s updated beliefs regarding the trend and
cycle are:

Fi,tµt =
σ2

µ(si,t − Fi,t−1xt) + (σ2
x + σ2

ϵ )Fi,t−1µt

σ2
µ + σ2

x + σ2
ϵ

= µt +
1

σ2
µ + σ2

x + σ2
ϵ
[σ2

µ(γ
x
t + ϵi,t)− (σ2

x + σ2
ϵ )γ

µ
t ], (C6)

Fi,txt =
σ2

x(si,t − Fi,t−1µt) + (σ2
µ + σ2

ϵ )Fi,t−1xt

σ2
µ + σ2

x + σ2
ϵ

= xt +
1

σ2
µ + σ2

x + σ2
ϵ
[σ2

x(γ
µ
t + ϵi,t)− (σ2

µ + σ2
ϵ )γ

x
t ]. (C7)

In Equations (C6) and (C7), two important features need to be emphasized. First, the
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covariance between the trend belief and the cyclical belief is given by cov(Fi,tµt, Fi,txt) =

− σ2
µσ2

x

σ2
µ+σ2

x+σ2
ϵ
< 0. Given the negative covariance between trend and cyclical beliefs, the

covariance between changes in long-run beliefs and cyclical beliefs could also be neg-
ative, which is analogous to our base model.

Second, both trend belief and cyclical belief increase with signal noise ϵi,t. In other
words, in Equation (C5), α3 and β3 have the same sign, which results in decreasing
forecast dispersion as the horizon extends.
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